
DBMS CHAP 6

Transaction, Recovery and Concurrency Control

Transaction Concept

•A transaction is a unit of program execution that accesses and possibly
updates various data items.

•E.g., transaction to transfer Rs50 from account A to account B:
1. read(A)

2. A := A – 50

3. write(A)

4. read(B)

5. B := B + 50

6. write(B)

•Two main issues to deal with:
• Failures of various kinds, such as hardware failures and system crashes
• Concurrent execution of multiple transactions

ACID Properties

•Atomicity. Either all operations of the transaction are properly reflected in
the database or none are.

•Example: Airline Reservation:

Check seat availability, airline confirms seat, reduces no of available seats,
charges credit card, increases no of meals.

So here either all changes should be reflected successfully or not.

A transaction is a unit of program execution that accesses and possibly updates various data items. To preserve
the integrity of data the database system must ensure:

Example

• Transaction to transfer 50 from account A to account B:
1. read(A)

2. A := A – 50

3. write(A)

4. read(B)

5. B := B + 50

6. write(B)

• Atomicity requirement

• If the transaction fails after step 3 and before step 6, money will be “lost” leading to an inconsistent database state

• Failure could be due to software or hardware

• The system should ensure that updates of a partially executed transaction are not reflected in the database

ACID Properties

•Consistency. Execution of a transaction in isolation preserves the
consistency of the database.

•Example: Balance in ACC A is 1000 and B is 5000, so sum = 6000. If 500 is
deducted from A then A is 500 so 5500 total but before saving A failure
occurs the proper reflection is not done.

A transaction is a unit of program execution that accesses and possibly updates various data items. To preserve
the integrity of data the database system must ensure:

Example

• Consistency requirement in above example:
• The sum of A and B is unchanged by the execution of the transaction

• In general, consistency requirements include
• Explicitly specified integrity constraints such as primary keys and foreign keys
• Implicit integrity constraints

• e.g., sum of balances of all accounts, minus sum of loan amounts must equal value of cash-in-hand
• A transaction must see a consistent database.
• During transaction execution the database may be temporarily inconsistent.
• When the transaction completes successfully the database must be consistent

• Erroneous transaction logic can lead to inconsistency

ACID Properties

• Isolation. Although multiple transactions may execute concurrently, each
transaction must be unaware of other concurrently executing transactions.
Intermediate transaction results must be hidden from other concurrently
executed transactions.
• That is, for every pair of transactions T

i
 and T

j
, it appears to T

i
 that either T

j
, finished

execution before T
i
 started, or T

j
 started execution after T

i
 finished.

A transaction is a unit of program execution that accesses and possibly updates various data items. To preserve
the integrity of data the database system must ensure:

Example
• Isolation requirement — if between steps 3 and 6, another transaction T2

is allowed to access the partially updated database, it will see an
inconsistent database (the sum A + B will be less than it should be).

 T1 T2
1. read(A)

2. A := A – 50

3. write(A)
 read(A), read(B), print(A+B)

4. read(B)

5. B := B + 50

6. write(B

• Isolation can be ensured trivially by running transactions serially
• That is, one after the other.

ACID Properties

•Durability. After a transaction completes successfully, the changes it has
made to the database persist (permanent), even if there are system failures.

A transaction is a unit of program execution that accesses and possibly updates various data items. To preserve
the integrity of data the database system must ensure:

Example

• Transaction to transfer 50 from account A to account B:
1. read(A)

2. A := A – 50

3. write(A)

4. read(B)

5. B := B + 50

6. write(B)

• Durability requirement — once the user has been notified that the transaction has completed (i.e., the transfer of the 50 has taken
place), the updates to the database by the transaction must persist even if there are software or hardware failures.

Transaction State
•Active – the initial state; the transaction stays in this state while it is

executing

•Partially committed – after the final statement has been executed.

• Failed -- after the discovery that normal execution can no longer proceed.

•Aborted – after the transaction has been rolled back and the database
restored to its state prior to the start of the transaction. Two options after it
has been aborted:
• Restart the transaction

• Can be done only if no internal logical error

• Kill the transaction

•Committed – after successful completion.

Transaction State (Cont.)

Concurrent Executions
•Multiple transactions are allowed to run concurrently in the system.

Advantages are:
• Increased processor and disk utilization, leading to better transaction throughput

• E.g., one transaction can be using the CPU while another is reading from or writing to the disk

• Reduced average response time for transactions: short transactions need not
wait behind long ones.

•Concurrency control schemes – mechanisms to achieve isolation
• That is, to control the interaction among the concurrent transactions in order to

prevent them from destroying the consistency of the database
• Will study in Chapter 15, after studying notion of correctness of concurrent executions.

Schedules
• Schedule – a sequences of instructions that specify the chronological order

in which instructions of concurrent transactions are executed
• A schedule for a set of transactions must consist of all instructions of those

transactions
• Must preserve the order in which the instructions appear in each individual

transaction.

•A transaction that successfully completes its execution will have a commit
instructions as the last statement
• By default transaction assumed to execute commit instruction as its last step

•A transaction that fails to successfully complete its execution will have an
abort instruction as the last statement

Schedule 1
• Let T

1
 transfer $50 from A to B, and T

2
 transfer 10% of the balance from A to

B.

•A serial schedule in which T
1
 is followed by T

2
 :

Schedule 2
•A serial schedule where T

2
 is followed by T

1

Schedule 3
• Let T1 and T2 be the transactions defined previously. The following schedule is not a serial schedule, but it is equivalent

to Schedule 1

• In Schedules 1, 2 and 3, the sum A + B is preserved.

Schedule 4
•The following concurrent schedule does not preserve the value of (A + B).

Serializability

•Basic Assumption – Each transaction preserves database consistency.

•Thus, serial execution of a set of transactions preserves database
consistency.

•A (possibly concurrent) schedule is serializable if it is equivalent to a serial
schedule. Different forms of schedule equivalence give rise to the notions
of:

1. Conflict serializability
2. View serializability

Conflicting Instructions
• Instructions l

i
 and l

j
 of transactions T

i
 and T

j
 respectively, conflict if and

only if there exists some item Q accessed by both l
i
 and l

j
, and at least one

of these instructions wrote Q.

 1. l
i
 = read(Q), l

j
 = read(Q). l

i
 and l

j
 don’t conflict.

 2. l
i
 = read(Q), l

j
 = write(Q). They conflict.

 3. l
i
 = write(Q), l

j
 = read(Q). They conflict

 4. l
i
 = write(Q), l

j
 = write(Q). They conflict

• Intuitively, a conflict between l
i
 and l

j
 forces a (logical) temporal order

between them.

• If l
i
 and l

j
 are consecutive in a schedule and they do not conflict, their

results would remain the same even if they had been interchanged in the
schedule.

Conflict Serializability

• If a schedule S can be transformed into a schedule S’ by a series of swaps
of non-conflicting instructions, we say that S and S’ are conflict
equivalent.

•We say that a schedule S is conflict serializable if it is conflict equivalent
to a serial schedule

Conflict Serializability (Cont.)
• Schedule 3 can be transformed into Schedule 6, a serial schedule where T

2

follows T
1
, by series of swaps of non-conflicting instructions. Therefore

Schedule 3 is conflict serializable.

Schedule 3 Schedule 6

Conflict Serializability (Cont.)
•Example of a schedule that is not conflict serializable:

•We are unable to swap instructions in the above schedule to obtain either
the serial schedule < T

3
, T

4
 >, or the serial schedule < T

4
, T

3
 >.

View Serializability
• Let S and S’ be two schedules with the same set of transactions. S and S’ are

view equivalent if the following three conditions are met, for each data item
Q,

1. If in schedule S, transaction T
i
 reads the initial value of Q, then in

 schedule S’ also transaction T
i
 must read the initial value of Q.

2. If in schedule S transaction T
i
 executes read(Q), and that value was

 produced by transaction T
j
 (if any), then in schedule S’ also

 transaction T
i
 must read the value of Q that was produced by the

 same write(Q) operation of transaction T
j
 .

3. The transaction (if any) that performs the final write(Q) operation in
 schedule S must also perform the final write(Q) operation in schedule S’.

•As can be seen, view equivalence is also based purely on reads and writes
alone.

View Serializability (Cont.)
•A schedule S is view serializable if it is view equivalent to a serial schedule.

•Every conflict serializable schedule is also view serializable.

•Below is a schedule which is view-serializable but not conflict serializable.

•What serial schedule is above equivalent to?

•Every view serializable schedule that is not conflict serializable has blind
writes.

Lock-Based Protocols

•A lock is a mechanism to control concurrent access to a data item

•Data items can be locked in two modes :

 1. exclusive (X) mode. Data item can be both read as well as
 written. X-lock is requested using lock-X instruction.

 2. shared (S) mode. Data item can only be read. S-lock is
 requested using lock-S instruction.

• Lock requests are made to the concurrency-control manager by the

programmer. Transaction can proceed only after request is granted.

Lock-Based Protocols (Cont.)
• Lock-compatibility matrix

• A transaction may be granted a lock on an item if the requested lock is
compatible with locks already held on the item by other transactions
• Any number of transactions can hold shared locks on an item,

• But if any transaction holds an exclusive on the item no other transaction may hold any lock
on the item.

• If a lock cannot be granted, the requesting transaction is made to wait till all
incompatible locks held by other transactions have been released. The lock is
then granted.

Lock-Based Protocols (Cont.)

• Example of a transaction performing locking:
 T

2
: lock-S(A);

 read (A);
 unlock(A);
 lock-S(B);
 read (B);
 unlock(B);
 display(A+B)
• Locking as above is not sufficient to guarantee serializability — if A and B get

updated in-between the read of A and B, the displayed sum would be wrong.
• A locking protocol is a set of rules followed by all transactions while requesting

and releasing locks. Locking protocols restrict the set of possible schedules.

The Two-Phase Locking Protocol
•This protocol ensures conflict-serializable schedules.

•Phase 1: Growing Phase
• Transaction may obtain locks
• Transaction may not release locks

•Phase 2: Shrinking Phase
• Transaction may release locks
• Transaction may not obtain locks

•The protocol assures serializability. It can be proved that the transactions

can be serialized in the order of their lock points (i.e., the point where a

transaction acquired its final lock).

The Two-Phase Locking Protocol (Cont.)

•There can be conflict serializable schedules that cannot be obtained if
two-phase locking is used.

•However, in the absence of extra information (e.g., ordering of access to
data), two-phase locking is needed for conflict serializability in the
following sense:
• Given a transaction T

i
 that does not follow two-phase locking, we can find a

transaction T
j
 that uses two-phase locking, and a schedule for T

i
 and T

j
 that is not

conflict serializable.

Lock Conversions

•Two-phase locking with lock conversions:

 – First Phase:
• can acquire a lock-S on item
• can acquire a lock-X on item
• can convert a lock-S to a lock-X (upgrade)

 – Second Phase:
• can release a lock-S
• can release a lock-X
• can convert a lock-X to a lock-S (downgrade)

•This protocol assures serializability. But still relies on the programmer
to insert the various locking instructions.

Automatic Acquisition of Locks
• A transaction T

i
 issues the standard read/write instruction, without explicit

locking calls.

• The operation read(D) is processed as:

 if T
i
 has a lock on D

 then

 read(D)
 else begin

 if necessary wait until no other
 transaction has a lock-X on D

 grant T
i
 a lock-S on D;

 read(D)
 end

Automatic Acquisition of Locks (Cont.)

• write(D) is processed as:
 if T

i
 has a lock-X on D

 then
 write(D)
 else begin
 if necessary wait until no other transaction has any lock on D,
 if T

i
 has a lock-S on D

 then
 upgrade lock on D to lock-X
 else
 grant T

i
 a lock-X on D

 write(D)
 end;
• All locks are released after commit or abort

Deadlocks
• Consider the partial schedule

• Neither T
3
 nor T

4
 can make progress — executing lock-S(B) causes T

4
 to wait for T

3
 to release its

lock on B, while executing lock-X(A) causes T
3
 to wait for T

4
 to release its lock on A.

• Such a situation is called a deadlock.
• To handle a deadlock one of T

3
 or T

4
 must be rolled back

and its locks released.

Deadlocks (Cont.)

•Two-phase locking does not ensure freedom from deadlocks.

• In addition to deadlocks, there is a possibility of starvation.

• Starvation occurs if the concurrency control manager is badly
designed. For example:
• A transaction may be waiting for an X-lock on an item, while a sequence of

other transactions request and are granted an S-lock on the same item.
• The same transaction is repeatedly rolled back due to deadlocks.

•Concurrency control manager can be designed to prevent starvation.

Deadlocks (Cont.)

• The potential for deadlock exists in most locking protocols. Deadlocks
are a necessary evil.

•When a deadlock occurs there is a possibility of cascading roll-backs.

• Cascading roll-back is possible under two-phase locking. To avoid this,
follow a modified protocol called strict two-phase locking -- a
transaction must hold all its exclusive locks till it commits/aborts.

• Rigorous two-phase locking is even stricter. Here, all locks are held
till commit/abort. In this protocol transactions can be serialized in the
order in which they commit.

Implementation of Locking

•A lock manager can be implemented as a separate process to which
transactions send lock and unlock requests

•The lock manager replies to a lock request by sending a lock grant
messages (or a message asking the transaction to roll back, in case of a
deadlock)

•The requesting transaction waits until its request is answered

•The lock manager maintains a data-structure called a lock table to
record granted locks and pending requests

•The lock table is usually implemented as an in-memory hash table
indexed on the name of the data item being locked

Deadlock Handling

• System is deadlocked if there is a set of transactions such that every
transaction in the set is waiting for another transaction in the set.

•Deadlock prevention protocols ensure that the system will never enter
into a deadlock state. Some prevention strategies :
• Require that each transaction locks all its data items before it begins execution

(predeclaration).
• Impose partial ordering of all data items and require that a transaction can

lock data items only in the order specified by the partial order.

More Deadlock Prevention Strategies

• Following schemes use transaction timestamps for the sake of
deadlock prevention alone.

•wait-die scheme — non-preemptive
• older transaction may wait for younger one to release data item. (older means

smaller timestamp) Younger transactions never Younger transactions never
wait for older ones; they are rolled back instead.

• a transaction may die several times before acquiring needed data item

•wound-wait scheme — preemptive
• older transaction wounds (forces rollback) of younger transaction instead of

waiting for it. Younger transactions may wait for older ones.
• may be fewer rollbacks than wait-die scheme.

Deadlock prevention (Cont.)

•Both in wait-die and in wound-wait schemes, a rolled back
transactions is restarted with its original timestamp. Older
transactions thus have precedence over newer ones, and starvation is
hence avoided.

•Timeout-Based Schemes:
• a transaction waits for a lock only for a specified amount of time. If the lock

has not been granted within that time, the transaction is rolled back and
restarted,

• Thus, deadlocks are not possible
• simple to implement; but starvation is possible. Also difficult to determine

good value of the timeout interval.

Deadlock Detection

• Deadlocks can be described as a wait-for graph, which consists of a pair G =
(V,E),
• V is a set of vertices (all the transactions in the system)
• E is a set of edges; each element is an ordered pair T

i
 →T

j
.

• If T
i
→ T

j
is in E, then there is a directed edge from T

i
 to T

j
, implying that T

i

is waiting for T
j
 to release a data item.

•When T
i
 requests a data item currently being held by T

j
, then the edge T

i
 →

T
j
 is inserted in the wait-for graph. This edge is removed only when T

j
 is no

longer holding a data item needed by T
i
.

• The system is in a deadlock state if and only if the wait-for graph has a
cycle. Must invoke a deadlock-detection algorithm periodically to look for
cycles.

Deadlock Detection (Cont.)

Wait-for graph without a
cycle

Wait-for graph with a
cycle

Deadlock Recovery

•When deadlock is detected :
• Some transaction will have to rolled back (made a victim) to break deadlock.

Select that transaction as victim that will incur minimum cost.
• Rollback -- determine how far to roll back transaction

• Total rollback: Abort the transaction and then restart it.

• More effective to roll back transaction only as far as necessary to break deadlock.

• Starvation happens if same transaction is always chosen as victim. Include the
number of rollbacks in the cost factor to avoid starvation

Timestamp-Based Protocols

• Each transaction is issued a timestamp when it enters the system. If an old
transaction T

i
 has time-stamp TS(T

i
), a new transaction T

j
 is assigned time-stamp

TS(T
j
) such that TS(T

i
) <TS(T

j
).

• The protocol manages concurrent execution such that the time-stamps determine
the serializability order.

• In order to assure such behavior, the protocol maintains for each data Q two
timestamp values:
• W-timestamp(Q) is the largest time-stamp of any transaction that executed write(Q)

successfully.

• R-timestamp(Q) is the largest time-stamp of any transaction that executed read(Q)
successfully.

Timestamp-Based Protocols (Cont.)

•The timestamp ordering protocol ensures that any conflicting read and
write operations are executed in timestamp order.

• Suppose a transaction T
i
 issues a read(Q)

1. If TS(T
i
) ≤ W-timestamp(Q), then T

i
 needs to read a value of Q that was

already overwritten.
● Hence, the read operation is rejected, and T

i
 is rolled back.

2. If TS(T
i
) ≥ W-timestamp(Q), then the read operation is executed, and

R-timestamp(Q) is set to max(R-timestamp(Q), TS(T
i
)).

Timestamp-Based Protocols (Cont.)

• Suppose that transaction T
i
 issues write(Q).

1. If TS(T
i
) < R-timestamp(Q), then the value of Q that T

i
 is producing was

needed previously, and the system assumed that that value would never
be produced.
● Hence, the write operation is rejected, and T

i
 is rolled back.

2. If TS(T
i
) < W-timestamp(Q), then T

i
 is attempting to write an obsolete value

of Q.
● Hence, this write operation is rejected, and T

i
 is rolled back.

3. Otherwise, the write operation is executed, and W-timestamp(Q) is set to
TS(T

i
).

Example Use of the Protocol

A partial schedule for several data items for transactions with
timestamps 1, 2, 3, 4, 5

Correctness of Timestamp-Ordering Protocol

• The timestamp-ordering protocol guarantees
serializability since all the arcs in the precedence
graph are of the form:

 Thus, there will be no cycles in the precedence
graph
• Timestamp protocol ensures freedom from

deadlock as no transaction ever waits.
• But the schedule may not be cascade-free, and may

not even be recoverable.

Thomas’ Write Rule

•Modified version of the timestamp-ordering protocol in which obsolete
write operations may be ignored under certain circumstances.

•When T
i
 attempts to write data item Q, if TS(T

i
) < W-timestamp(Q), then T

i

is attempting to write an obsolete value of {Q}.

• Rather than rolling back T
i
 as the timestamp ordering protocol would have done,

this {write} operation can be ignored.

•Otherwise this protocol is the same as the timestamp ordering protocol.

• Thomas' Write Rule allows greater potential concurrency.

• Allows some view-serializable schedules that are not conflict-serializable.

Validation-Based Protocol

• Execution of transaction T
i
is done in three phases.

 1. Read and execution phase: Transaction T
i
 writes only to

 temporary local variables
 2. Validation phase: Transaction T

i
 performs a ''validation test''

 to determine if local variables can be written without violating
 serializability.
 3. Write phase: If T

i
 is validated, the updates are applied to the

 database; otherwise, T
i
 is rolled back.

• The three phases of concurrently executing transactions can be interleaved,
but each transaction must go through the three phases in that order.
• Assume for simplicity that the validation and write phase occur together, atomically

and serially
• I.e., only one transaction executes validation/write at a time.

• Also called as optimistic concurrency control since transaction executes fully
in the hope that all will go well during validation

Validation-Based Protocol (Cont.)

•Each transaction T
i
 has 3 timestamps

• Start(T
i
) : the time when T

i
 started its execution

• Validation(T
i
): the time when T

i
 entered its validation phase

• Finish(T
i
) : the time when T

i
 finished its write phase

• Serializability order is determined by timestamp given at validation
time; this is done to increase concurrency.
• Thus, TS(T

i
) is given the value of Validation(T

i
).

•This protocol is useful and gives greater degree of concurrency if
probability of conflicts is low.
• because the serializability order is not pre-decided, and
• relatively few transactions will have to be rolled back.

Validation Test for Transaction T
j

• If for all T
i
 with TS (T

i
) < TS (T

j
) either one of the following condition holds:

• finish(T
i
) < start(T

j
)

• start(T
j
) < finish(T

i
) < validation(T

j
) and the set of data items written by T

i
 does not

intersect with the set of data items read by T
j
.

 then validation succeeds and T
j
 can be committed. Otherwise, validation

fails and T
j
 is aborted.

• Justification: Either the first condition is satisfied, and there is no
overlapped execution, or the second condition is satisfied and
● the writes of T

j
 do not affect reads of T

i
 since they occur after T

i
 has finished its

reads.
● the writes of T

i
 do not affect reads of T

j
 since T

j
 does not read any item written by

T
i
.

Failures

Failures

Checkpoint

Checkpoint

Checkpoint

Log Based Recovery

Log Based Recovery

Shadow Paging

Shadow Paging

Shadow Paging

Shadow Paging

