
Chapter 4
Relational Algebra

&
Relational Calculus

Chapter 4 - Objectives

• Meaning of the term relational completeness.

• How to form queries in relational algebra.

• How to form queries in tuple relational calculus.

• How to form queries in domain relational calculus.

• Categories of relational DML.

2

Introduction

• Relational algebra and relational calculus are formal languages
associated with the relational model.
• Informally, relational algebra is a (high-level) procedural

language and relational calculus a non-procedural language.
• However, formally both are equivalent to one another.
• A language that produces a relation that can be derived using

relational calculus is relationally complete.

3

Database Query Languages
• Given a database, ask questions, get data as answers
• Get all students with GPA > 3.7 who applied to USQ and

QUT and nowhere else
• Get all humanities departments at campuses in

Queensland with < 200 applicants
• Get the campus with highest average accept rate over

the last five years
• Some questions are easy to pose, some are not
• Some questions are easy for DBMS to answer, some are

not.
• "Query language“, but also used to update the database

4

Relational Query Languages
• Formal:

• relational algebra, relational calculus, Datalog

• Practical:
• SQL,

• Quel,

• Query-by-Example (QBE)

• In ALL languages, a query is executed over a set of relations, get
single relation as the result

5

Relational Algebra (RA)
• Relational algebra operations work on one or more relations to

define another relation without changing the original relations.

• Both operands and results are relations, so output from one
operation can become input to another operation.

• Allows expressions to be nested, just as in arithmetic. This
property is called closure.

6

Relational Algebra

• 5 basic operations in relational algebra: Selection, Projection,
Cartesian product, Union, and Set Difference.

• These perform most of the data retrieval operations needed.

• Also have Join, Intersection, and Division operations, which can
be expressed in terms of 5 basic operations.

7

RA Operations

• Operations of traditional relational algebra
fall into four broad classes:

1. Operations that remove parts of a relation
2. Renaming
3. Set operations
4. Operations that combine tuples of two

relations

8

Relational Algebra Operations

9

Relational Algebra Operations

10

Selection (or Restriction)
• predicate (R)

• Works on a single relation R (unary operation) and defines a relation that
contains only those tuples (rows) of R that satisfy the specified condition
(predicate).
• Schema of C (R) is the same as schema of R
• Selection loses information
• Condition C:

• AND, OR, NOT, A θ B, A θ c, where θ {<, ≤, >, ≥, =, ≠}

11

Example - Selection (or
Restriction)
• List all staff with a salary greater than £10,000.

salary > 10000 (Staff)

12

Projection
• col1, . . . , coln(R)

• Works on a single relation R (unary operation) and defines a relation that
contains a vertical subset of R, extracting the values of specified attributes and
eliminating duplicates.
• Projection loses information

• Possibly vertically, possibly horizontally
• Schema of resulting relation: attributes subset of the attributes of R

13

Example - Projection
• Produce a list of salaries for all staff, showing only staffNo, fName,

lName, and salary details.

staffNo, fName, lName, salary(Staff)

14

Rename

• ργ (R) (unary operation)
• γ is a one-to-one function that maps a set of attributes to a new set of

attributes
• Schema is the same, up to renaming of attributes
• Content, or instance, remains unchanged

15

Union
• R  S (binary operation, set operation)
• Union of two relations R and S defines a relation that contains all the tuples of

R, or S, or both R and S, duplicate tuples being eliminated.
• R and S must be union-compatible.

• Same set of attributes + domains

• If R and S have I and J tuples, respectively, union is obtained by
concatenating them into one relation with a maximum of (I + J) tuples.
• Lossless, but impossible to undo
• commutative, associative

16

Example - Union
• List all cities where there is either a branch office or a property for rent.

city(Branch)  city(PropertyForRent)

17

Set Difference
• R – S (binary operation, set operation)

• Defines a relation consisting of the tuples that are in relation R, but not in S.
• R and S must be union-compatible.
• Loses information
• R - S  S - R !!

18

Example - Set Difference
• List all cities where there is a branch office but no properties for rent.

city(Branch) – city(PropertyForRent)

19

Intersection
• R  S (binary operation, set operation)

• Defines a relation consisting of the set of all tuples that are in both R and
S.
• R and S must be union-compatible.

• Expressed using basic operations:
R  S = R – (R – S)

• commutative, associative

20

Example - Intersection
• List all cities where there is both a branch office and at least one

property for rent.

city(Branch)  city(PropertyForRent)

21

Cartesian product
• R × S (binary operation, set operation)

• Defines a relation that is the concatenation of every tuple of relation R with
every tuple of relation S.
• Lossless, possible to undo using projection

• Unless one of R, S is empty!
• #(R x S) = #R * #S
• Schema: union of sets of attributes
• commutative, associative

22

Example - Cartesian Product
• List the names and comments of all clients who have viewed a

property for rent.
(clientNo, fName, lName(Client)) X (clientNo, propertyNo,comment

(Viewing))

Requires
further
restriction!

23

Example - Cartesian Product
and Selection
•Use selection operation to extract those tuples where

Client.clientNo = Viewing.clientNo.
Client.clientNo = viewing.clientNo((clientNo,fName,lName(Client)) 

(clientNo,propertyNo,comment(Viewing)))

24

 Cartesian product and Selection can be reduced to a single
operation called a Join.

Join Operations
• Join is a derivative of Cartesian product.

• Equivalent to performing a Selection, using join predicate as
selection formula, over Cartesian product of the two operand
relations.
• σC (R × S)

• One of the most difficult operations to implement efficiently in
an RDBMS and one reason why RDBMSs have intrinsic
performance problems.
• But can usually be optimized

25

Join Operations
• Various forms of join operation

• Theta join
• Equijoin (a particular type of Theta join)
• Natural join
• Outer join
• Semijoin

26

Theta join (-join)
• R F S
• Defines a relation that contains tuples satisfying the predicate F from the

Cartesian product of R and S.
• The predicate F is of the form R.ai  S.bi where  may be one of the

comparison operators (<, , >, , =, ).

27

Theta join (-join)
• Can rewrite Theta join using basic Selection and Cartesian product

operations.

R FS = F(R × S)

28

 Degree of a Theta join is sum of degrees of the
operand relations R and S.

 If predicate F contains only equality (=), the term
Equijoin is used.

Example - Equijoin
• List the names and comments of all clients who have viewed a property

for rent.
(clientNo,fName,lName(Client)) Client.clientNo = Viewing.clientNo (clientNo,propertyNo,comment(Viewing))

29

Natural Join
• R S
• An Equijoin of the two relations R and S over all common attributes x. One

occurrence of each common attribute is eliminated from the result.
• Usual simulation (selection and cartesian product), plus projection

30

Example - Natural Join
• List the names and comments of all clients who have viewed a property

for rent.
(clientNo,fName,lName(Client)) (clientNo,propertyNo,comment(Viewing))

31

Outer join
• To display rows in the result that do not have matching values in

the join column, use Outer join.

• R S
• (Left) outer join is join in which tuples from R that do not have matching

values in common columns of S are also included in result relation.
• Padded with NULLs

32

Example - Left Outer join
• Produce a status report on property viewings.

propertyNo,street,city(PropertyForRent) Viewing

33

Semijoin
• R FS
• Defines a relation that contains the tuples of R that participate in the join of R with

S.

34

 Can rewrite Semijoin using Projection and Join:

R FS = A(R F S)

Example - Semijoin
• List complete details of all staff who work at the branch in Glasgow.

Staff Staff.brancNo = Branch.branchNo and branch.city = ‘Glasgow’ Branch

35

Division
• R  S

• Defines a relation over the attributes C that consists of set of tuples from R that
match combination of every tuple in S.

• Expressed using basic operations:
T1  C (R)

T2  C ((S × T1) – R)

T  T1 – T2

36

Example - Division
• Identify all clients who have viewed all properties with three rooms.

(clientNo,propertyNo(Viewing))  (propertyNo(rooms = 3 (PropertyForRent)))

37

Why Relational Algebra?
• All DBMSs use relational algebra as intermediate language for

specifying query evaluation algorithms
• Parse SQL and translate it into expression in relational

algebra
• However, translated expression (or straight SQL) would be

very inefficient
• Set of rules for manipulating algebraic expressions
• Don’t exist for SQL
• Expressions can be converted into equivalent ones which

take less time to execute
• Done by query optimizer

38

Overview of Query Processing

39

SQL
Query

Relational Algebra Expression

Query Execution Plan

Executable Code

Parser

Query Optimizer

Code Generator

Remarks about the Relational
Algebra
• The Relational Algebra is not Turing Complete

• No explicit loop
• No recursion

• This is a feature, not a bug
• Helps with query optimization and processing
• Operations are linear in size of instance

• It is undecidable whether two algebra expressions are equivalent
• Restriction to Conjunctive Queries: decidable

• CQ: Selection, projection, Cartesian product only

40

No transitive closure!

Non-trivial example queries
• Consider the relation schema:

• Visits(Drinker,Bar); Likes(Drinker,Beer); Serves(Bar,Beer);
• Give all the drinkers with the beers they do not like

• (ΠDrinker(Likes) x ΠBeer(Likes)) - Likes

• Give the pairs of beers that are not served in a common bar
• (ΠBeer(Serves) x ΠBeer(Serves)) -
• ΠBeer1,Beer2.σBar1=Bar2(Serves x Serves)

41

More hard RA expressions
• Give all the drinkers that like all beers that ‘John’ likes

• Likes : ΠBeer . σDrinker=‘John’ (Likes)

• Give all the drinkers that like exactly the same beers as ‘John’
• (Likes : ΠBeer . σDrinker=‘John’ (Likes)) ∩
• (((ΠDrinker(Likes) X ΠBeer(Likes)) - Likes) :
• ΠBeer. σDrinker=‘John’ ((ΠDrinker(Likes) X ΠBeer(Likes)) - Likes))

42

Relational Calculus (RC)
• Relational calculus query specifies what is to be retrieved rather than

how to retrieve it.
• No description of how to evaluate a query.

• In first-order logic (or predicate calculus), predicate is a truth-valued
function with arguments.

• When we substitute values for the arguments, function yields an
expression, called a proposition, which can be either true or false.

43

Relational Calculus
• If predicate contains a variable (e.g. ‘x is a member of staff’), there

must be a range for x.

• When we substitute some values of this range for x, proposition may
be true; for other values, it may be false.

• When applied to databases, relational calculus has two forms: tuple
and domain.

44

Tuple Relational Calculus (TRC)
• Interested in finding tuples for which a predicate is true. Based on

use of tuple variables.

• Tuple variable is a variable that ‘ranges over’ a named relation:
i.e., variable whose only permitted values are tuples of the relation.

• Specify range of a tuple variable S as the Staff relation as:
Staff(S)

• To find set of all tuples S such that P(S) is true:
{S | P(S)}

45

Tuple Relational Calculus - Example
• To find details of all staff earning more than £10,000:

{S | Staff(S)  S.salary > 10000}

• To find a particular attribute, such as salary, write:

{S.salary | Staff(S)  S.salary > 10000}

46

Tuple Relational Calculus
• Can use two quantifiers to tell how many instances the predicate

applies to:
• Existential quantifier  (‘there exists’)
• Universal quantifier  (‘for all’)

• Tuple variables qualified by  or are called bound variables,
otherwise called free variables.

47

Tuple Relational Calculus

• Existential quantifier used in formulae that must be true for at
least one instance, such as:

Staff(S)  (B)(Branch(B)  (B.branchNo = S.branchNo)  B.city =
‘London’)

• Means ‘There exists a Branch tuple that has the same branchNo as
the branchNo of the current Staff tuple, S, and is located in
London’.

48

Tuple Relational Calculus
• Universal quantifier is used in statements about every instance, such

as:
B) (B.city  ‘Paris’)

• Means ‘For all Branch tuples, the address is not in Paris’.

• Can also use ~(B) (B.city = ‘Paris’) which means ‘There are no
branches with an address in Paris’.

49

Tuple Relational Calculus
• Formulae should be unambiguous and make sense.
• A (well-formed) formula is made out of atoms:

• R(Si), where Si is a tuple variable and R is a relation
• Si.a1 Sj.a2
• Si.a1 c

• Can recursively build up formulae from atoms:
• An atom is a formula
• If F1 and F2 are formulae, so are their conjunction, F1  F2;

disjunction, F1  F2; and negation, ~F1
• If F is a formula with free variable X, then (X)(F) and

(X)(F) are also formulae.

50

Example - Tuple Relational Calculus

a) List the names of all managers who earn more than £25,000.

{S.fName, S.lName | Staff(S) 
 S.position = ‘Manager’  S.salary > 25000}

b) List the staff who manage properties for rent in Glasgow.

{S | Staff(S)  (P) (PropertyForRent(P)  (P.staffNo = S.staffNo)  P.city =
‘Glasgow’)}

51

Example - Tuple Relational Calculus

c) List the names of staff who currently do not manage any properties.

{S.fName, S.lName | Staff(S)  (~(P) (PropertyForRent(P)(S.staffNo =
P.staffNo)))}

Or
{S.fName, S.lName | Staff(S)  (P) (~PropertyForRent(P) 
 ~(S.staffNo = P.staffNo)))}

52

Example - Tuple Relational Calculus

• List the names of clients who have viewed a property for rent in
Glasgow.

{C.fName, C.lName | Client(C)  ((V)(P)
 (Viewing(V)  PropertyForRent(P)  (
 C.clientNo = V.clientNo) 
 (V.propertyNo=P.propertyNo)P.city =‘Glasgow’))}

53

Tuple Relational Calculus

•Expressions can generate an infinite set. For
example:
{S | ~Staff(S)}

• To avoid this [an unsafe query], add restriction that all values in result
must be values in the domain of the expression.
• Basically, tie all tuple variables to a relation

54

Unsafe queries in TRC

• The following TRC expressions are safe
• { t(A) | u (R(u) AND u(A) = t(A)) }
• { t(A) | NOT u (R(u) AND u(A) ≠ t(A)) }
• { t(A) | u (R(u) => u(A) = t(A)) }

• The following TRC expressions are unsafe
• { t(A,B) | NOT R(t) }
• { t(A) | u(u(A) = t(A)) }
• { t(A) | u(R(u) AND t(A) = 8) }

55

Domain Relational Calculus (DRC)

• Uses variables that take values from domains instead of tuples of
relations.

• If F(d1, d2, . . . , dn) stands for a formula composed of atoms and d1, d2, . .
. , dn represent domain variables, then:

{d1, d2, . . . , dn | F(d1, d2, . . . , dn)}

is a general domain relational calculus expression.

56

Example - Domain Relational Calculus

a) Find the names of all managers who earn more than £25,000.

{fN, lN | (sN, posn, sex, DOB, sal, bN)
 (Staff (sN, fN, lN, posn, sex, DOB, sal, bN) 
 posn = ‘Manager’  sal > 25000)}

57

Example - Domain Relational Calculus

b) List the staff who manage properties for rent in Glasgow.

{sN, fN, lN, posn, sex, DOB, sal, bN |
(sN1,cty)(Staff(sN,fN,lN,posn,sex,DOB,sal,bN) 
 (PropertyForRent(pN, st, cty, pc, typ, rms,
 rnt,oN, sN1, bN1) 
(sN=sN1) 
cty=‘Glasgow’)}

58

Example - Domain Relational Calculus

c) List the names of staff who currently do not manage any
properties for rent.

{fN, lN | (sN)
 (Staff(sN,fN,lN,posn,sex,DOB,sal,bN) 
 (~(sN1) (PropertyForRent(pN, st, cty, pc, typ,
 rms, rnt,oN, sN1, bN1) (sN = sN1))))}

Note: for brevity, some attributes here were not bound but
should have been. See text book p. 106 (Third Edition), p.
108 (Fourth Edition).

You should always bind non-free variables in assignments and
exams.

59

Example - Domain Relational Calculus

d) List the names of clients who have viewed a property for rent
in Glasgow.

{fN, lN | (cN, cN1, pN, pN1, cty)
 (Client(cN, fN, lN,tel, pT, mR) 
 Viewing(cN1, pN1, dt, cmt) 
 PropertyForRent(pN, st, cty, pc, typ,
 rms, rnt,oN, sN, bN) 
 (cN = cN1) (pN = pN1) cty = ‘Glasgow’)}

60

Domain Relational Calculus
• When restricted to safe expressions, domain relational calculus is

equivalent to tuple relational calculus restricted to safe
expressions, which is equivalent to relational algebra.

• Means every relational algebra expression has an equivalent
relational calculus expression, and vice versa.

61

Why Relational Calculus?
• Easy queries can be written in SQL immediately
• Difficult queries require, either:
• Very much experience; or
• Trial-and-error iterative approach; or
• Good understanding of Relational Calculus

• SQL, like RC, is a declarative language
•With some procedural ingredients (e.g. union)

• Quantifiers in RC are directly translated in SQL (EXISTS)
• Following formal translation algorithms exist:
• From Calculus to SQL
• From SQL to Algebra
• From Algebra to Calculus

62

Overview of Query Processing

63

Question
?

Relational Calculus Expression

SQL Expression

Relational Algebra Expression

User

RDBMS

Remarks about the Relational
Calculus

• Corresponds to Predicate Logic
• A.k.a First Order Logic

• Formally, a query is a function mapping a set of relations to a single
relation
• Same expressive power as Relational Algebra
• Same theoretical results
• If a query language can express the same queries as the Relational

Calculus, then it is relationally complete
• RC, like RA, does not have aggregate functions such as Count, and

also not grouping
• These are extra features provided by SQL
• Instead, joining can be used for some types of counting

64

Other Languages
• Transform-oriented languages are non-procedural languages that use

relations to transform input data into required outputs (e.g. SQL).

• Graphical languages provide user with picture of the structure of the
relation. User fills in example of what is wanted and system returns
required data in that format (e.g. QBE).

65

Other Languages
• 4GLs can create complete customized application using limited set

of commands in a user-friendly, often menu-driven environment.

• Some systems accept a form of natural language, sometimes called a
5GL, although this development is still a an early stage.

66

	Chapter 4
	Chapter 4 - Objectives
	Introduction
	Database Query Languages
	Relational Query Languages
	Relational Algebra (RA)
	Relational Algebra
	RA Operations
	Relational Algebra Operations
	Slide 10
	Selection (or Restriction)
	Example - Selection (or Restriction)
	Projection
	Example - Projection
	Rename
	Union
	Example - Union
	Set Difference
	Example - Set Difference
	Intersection
	Example - Intersection
	Cartesian product
	Example - Cartesian Product
	Example - Cartesian Product and Selection
	Join Operations
	Slide 26
	Theta join (-join)
	Slide 28
	Example - Equijoin
	Natural Join
	Example - Natural Join
	Outer join
	Example - Left Outer join
	Semijoin
	Example - Semijoin
	Division
	Example - Division
	Why Relational Algebra?
	Overview of Query Processing
	Remarks about the Relational Algebra
	Non-trivial example queries
	More hard RA expressions
	Relational Calculus (RC)
	Relational Calculus
	Tuple Relational Calculus (TRC)
	Tuple Relational Calculus - Example
	Tuple Relational Calculus
	Tuple Relational Calculus
	Slide 49
	Slide 50
	Example - Tuple Relational Calculus
	Slide 52
	Slide 53
	Slide 54
	Unsafe queries in TRC
	Domain Relational Calculus (DRC)
	Example - Domain Relational Calculus
	Slide 58
	Slide 59
	Slide 60
	Domain Relational Calculus
	Why Relational Calculus?
	Slide 63
	Remarks about the Relational Calculus
	Other Languages
	Slide 66

