
Chapter 4
Relational Algebra 

&
Relational Calculus



Chapter 4 - Objectives

• Meaning of the term relational completeness.

• How to form queries in relational algebra.

• How to form queries in tuple relational calculus.

• How to form queries in domain relational calculus.

• Categories of relational DML.
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Introduction

• Relational algebra and relational calculus are formal languages 
associated with the relational model.
• Informally, relational algebra is a (high-level) procedural 

language and relational calculus a non-procedural language.
• However, formally both are equivalent to one another.
• A language that produces a relation that can be derived using 

relational calculus is relationally complete.
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Database Query Languages
• Given a database, ask questions, get data as answers
• Get all students with GPA > 3.7 who applied to USQ and 

QUT and nowhere else
• Get all humanities departments at campuses in 

Queensland with < 200 applicants
• Get the campus with highest average accept rate over 

the last five years
• Some questions are easy to pose, some are not
• Some questions are easy for DBMS to answer, some are 

not.
• "Query language“, but also used to update the database
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Relational Query Languages
• Formal: 

• relational algebra, relational calculus, Datalog

• Practical: 
• SQL, 

• Quel, 

• Query-by-Example (QBE)

• In ALL languages, a query is executed over a set of relations, get 
single relation as the result
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Relational Algebra (RA)
• Relational algebra operations work on one or more relations to 

define another relation without changing the original relations.

• Both operands and results are relations, so output from one 
operation can become input to another operation. 

• Allows expressions to be nested, just as in arithmetic. This 
property is called closure.
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Relational Algebra

• 5 basic operations in relational algebra: Selection, Projection, 
Cartesian product, Union,  and Set Difference. 

• These perform most of the data retrieval operations needed.

• Also have Join, Intersection, and Division operations, which can 
be expressed in terms of 5 basic operations.
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RA Operations

• Operations of traditional relational algebra 
fall into four broad classes:

1. Operations that remove parts of a relation
2. Renaming
3. Set operations
4. Operations that combine tuples of two 

relations
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Relational Algebra Operations
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Relational Algebra Operations
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Selection (or Restriction)
• predicate (R)

• Works on a single relation R (unary operation) and defines a relation that 
contains only those tuples (rows) of R that satisfy the specified condition 
(predicate).
• Schema of C (R) is the same as schema of R
• Selection loses information
• Condition C:

• AND, OR, NOT, A θ B, A θ c, where θ {<, ≤, >, ≥, =, ≠}

11



Example - Selection (or 
Restriction)
• List all staff with a salary greater than £10,000.

salary > 10000 (Staff)
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Projection
• col1, . . . , coln(R)

• Works on a single relation R (unary operation) and defines a relation that 
contains a vertical subset of R, extracting the values of specified attributes and 
eliminating duplicates.
• Projection loses information

• Possibly vertically, possibly horizontally
• Schema of resulting relation: attributes subset of the attributes of R
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Example - Projection
• Produce a list of salaries for all staff, showing only  staffNo, fName, 

lName, and salary details.

staffNo, fName, lName, salary(Staff)
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Rename

• ργ (R)  (unary operation) 
• γ is a one-to-one function that maps a set of attributes to a new set of 

attributes
• Schema is the same, up to renaming of attributes
• Content, or instance, remains unchanged
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Union
• R  S  (binary operation, set operation)
• Union of two relations R and S defines a relation that contains all the tuples of 

R, or S, or both R and S, duplicate tuples being eliminated. 
• R and S must be union-compatible.

• Same set of attributes + domains

• If R and S have I and J tuples, respectively, union is obtained by 
concatenating them into one relation with a maximum of (I + J) tuples.
• Lossless, but impossible to undo
• commutative, associative
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Example - Union
• List all cities where there is either a branch office or a property for rent.

city(Branch)  city(PropertyForRent)
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Set Difference
• R – S  (binary operation, set operation)

• Defines a relation consisting of the tuples that are in relation R, but not in S. 
• R and S must be union-compatible.
• Loses information
• R - S  S - R !!
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Example - Set Difference
• List all cities where there is a branch office but no properties for rent.

city(Branch) – city(PropertyForRent)
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Intersection
• R  S  (binary operation, set operation)

• Defines a relation consisting of the set of all tuples that are in both R and 
S. 
• R and S must be union-compatible.

• Expressed using basic operations:
R  S = R – (R – S)

• commutative, associative
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Example - Intersection
• List all cities where there is both a branch office and at least one 

property for rent.

city(Branch)  city(PropertyForRent)
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Cartesian product
• R × S  (binary operation, set operation) 

• Defines a relation that is the concatenation of every tuple of relation R with 
every tuple of relation S.
• Lossless, possible to undo using projection

• Unless one of R, S is empty!
• #(R x S) = #R * #S
• Schema: union of sets of attributes
• commutative, associative
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Example - Cartesian Product
• List the names and comments of all clients who have viewed a 

property for rent.
(clientNo, fName, lName(Client)) X (clientNo, propertyNo,comment 

(Viewing))

Requires
further
restriction!
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Example - Cartesian Product 
and Selection
•Use selection operation to extract those tuples where 

Client.clientNo = Viewing.clientNo.
Client.clientNo = viewing.clientNo((clientNo,fName,lName(Client))  

(clientNo,propertyNo,comment(Viewing)))
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 Cartesian product and Selection can be reduced to a single 
operation called a Join.



Join Operations
• Join is a derivative of Cartesian product.

• Equivalent to performing a Selection, using join predicate as 
selection formula, over Cartesian product of the two operand 
relations. 
• σC (R × S) 

• One of the most difficult operations to implement efficiently in 
an RDBMS and one reason why RDBMSs have intrinsic 
performance problems.
• But can usually be optimized 
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Join Operations
• Various forms of join operation

• Theta join
• Equijoin (a particular type of Theta join)
• Natural join
• Outer join
• Semijoin
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Theta join (-join)
• R       F S
• Defines a relation that contains tuples satisfying the predicate F from the 

Cartesian product of R and S. 
• The predicate F is of the form R.ai  S.bi where  may be one of the 

comparison operators (<, , >, , =, ).
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Theta join (-join)
• Can rewrite Theta join using basic Selection and Cartesian product 

operations.

R      FS = F(R × S)
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 Degree of a Theta join is sum of degrees of the 
operand relations R and S. 

 If predicate F contains only equality (=), the term 
Equijoin is used. 



Example - Equijoin 
• List the names and comments of all clients who have viewed a property 

for rent.
(clientNo,fName,lName(Client))      Client.clientNo = Viewing.clientNo (clientNo,propertyNo,comment(Viewing))
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Natural Join
• R      S
• An Equijoin of the two relations R and S over all common attributes x. One 

occurrence of each common attribute is eliminated from the result.
• Usual simulation (selection and cartesian product), plus projection
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Example - Natural Join
• List the names and comments of all clients who have viewed a property 

for rent.
(clientNo,fName,lName(Client))       (clientNo,propertyNo,comment(Viewing))
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Outer join
• To display rows in the result that do not have matching values in 

the join column, use Outer join.

• R       S
• (Left) outer join is join in which tuples from R that do not have matching 

values in common columns of S are also included in result relation.
• Padded with NULLs
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Example - Left Outer join
• Produce a status report on property viewings.

propertyNo,street,city(PropertyForRent)        Viewing
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Semijoin
• R     FS
• Defines a relation that contains the tuples of R that participate in the join of R with 

S.
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 Can rewrite Semijoin using Projection and Join:

R     FS  = A(R      F S)



Example - Semijoin
• List complete details of all staff who work at the branch in Glasgow.

Staff     Staff.brancNo = Branch.branchNo and branch.city = ‘Glasgow’ Branch
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Division
• R  S

• Defines a relation over the attributes C that consists of set of tuples from R that 
match combination of every tuple in S.

• Expressed using basic operations:
T1  C (R)

T2  C ((S × T1) – R)

T  T1 – T2
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Example - Division
• Identify all clients who have viewed all properties with three rooms.

(clientNo,propertyNo(Viewing))  (propertyNo(rooms = 3 (PropertyForRent)))
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Why Relational Algebra?
• All DBMSs use relational algebra as intermediate language for 

specifying query evaluation algorithms
• Parse SQL and translate it into expression in relational 

algebra
• However, translated expression (or straight SQL) would be 

very inefficient
• Set of rules for manipulating algebraic expressions 
• Don’t exist for SQL
• Expressions can be converted into equivalent ones which 

take less time to execute
• Done by query optimizer
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Overview of Query Processing
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Relational Algebra Expression
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Executable Code
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Remarks about the Relational 
Algebra
• The Relational Algebra is not Turing Complete

• No explicit loop
• No recursion

• This is a feature, not a bug
• Helps with query optimization and processing
• Operations are linear in size of instance

• It is undecidable whether two algebra expressions are equivalent
• Restriction to Conjunctive Queries: decidable

• CQ: Selection, projection, Cartesian product only
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Non-trivial example queries
• Consider the relation schema:

• Visits(Drinker,Bar); Likes(Drinker,Beer); Serves(Bar,Beer);
• Give all the drinkers with the beers they do not like

• (ΠDrinker(Likes) x ΠBeer(Likes)) - Likes

• Give the pairs of beers that are not served in a common bar
• (ΠBeer(Serves) x ΠBeer(Serves)) -
• ΠBeer1,Beer2.σBar1=Bar2(Serves x Serves)
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More hard RA expressions
• Give all the drinkers that like all beers that ‘John’ likes

• Likes : ΠBeer . σDrinker=‘John’ (Likes)

• Give all the drinkers that like exactly the same beers as ‘John’
• ( Likes : ΠBeer . σDrinker=‘John’ (Likes) ) ∩
• (((ΠDrinker(Likes) X ΠBeer(Likes)) - Likes) :
• ΠBeer. σDrinker=‘John’ ((ΠDrinker(Likes) X ΠBeer(Likes)) - Likes))
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Relational Calculus (RC)
• Relational calculus query specifies what is to be retrieved rather than 

how to retrieve it. 
• No description of how to evaluate a query.

• In first-order logic (or predicate calculus), predicate is a truth-valued 
function with arguments. 

• When we substitute values for the arguments, function yields an 
expression, called a proposition, which can be either true or false. 
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Relational Calculus
• If predicate contains a variable (e.g. ‘x is a member of staff’), there 

must be a range for x. 

• When we substitute some values of this range for x, proposition may 
be true; for other values, it may be false. 

• When applied to databases, relational calculus has two forms: tuple 
and domain.

44



Tuple Relational Calculus (TRC)
• Interested in finding tuples for which a predicate is true. Based on 

use of tuple variables. 

• Tuple variable is a variable that ‘ranges over’ a named relation: 
i.e., variable whose only permitted values are tuples of the relation. 

• Specify range of a tuple variable S as the Staff relation as: 
Staff(S)

• To find set of all tuples S such that P(S) is true:
{S | P(S)}
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Tuple Relational Calculus - Example
• To find details of all staff earning more than £10,000:

{S | Staff(S)  S.salary > 10000}

• To find a particular attribute, such as salary, write:

{S.salary | Staff(S)  S.salary > 10000}
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Tuple Relational Calculus
• Can use two quantifiers to tell how many instances the predicate 

applies to:
• Existential quantifier  (‘there exists’) 
• Universal quantifier  (‘for all’) 

• Tuple variables qualified by  or are called bound variables, 
otherwise called free variables.
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Tuple Relational Calculus 

• Existential quantifier used in formulae that must be true for at 
least one instance, such as:

Staff(S)  (B)(Branch(B)  (B.branchNo = S.branchNo)  B.city = 
‘London’)

• Means ‘There exists a Branch tuple that has the same branchNo as 
the branchNo of the current Staff tuple, S, and is located in 
London’. 

48



Tuple Relational Calculus
• Universal quantifier is used in statements about every instance, such 

as:
B) (B.city  ‘Paris’)

• Means ‘For all Branch tuples, the address is not in Paris’. 

• Can also use ~(B) (B.city = ‘Paris’) which means ‘There are no 
branches with an address in Paris’.
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Tuple Relational Calculus
• Formulae should be unambiguous and make sense. 
• A (well-formed) formula is made out of atoms:

• R(Si), where Si is a tuple variable and R is a relation
• Si.a1 Sj.a2
• Si.a1 c 

• Can recursively build up formulae from atoms:
• An atom is a formula
• If F1 and F2 are formulae, so are their conjunction, F1  F2; 

disjunction, F1  F2; and negation, ~F1
• If F is a formula with free variable X, then (X)(F) and 

(X)(F) are also formulae.
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Example - Tuple Relational Calculus

a) List the names of all managers who earn more than £25,000.

{S.fName, S.lName | Staff(S)  
      S.position = ‘Manager’  S.salary > 25000}

b) List the staff who manage properties for rent in Glasgow.

{S | Staff(S)  (P) (PropertyForRent(P)  (P.staffNo = S.staffNo)  P.city = 
‘Glasgow’)}
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Example - Tuple Relational Calculus

c) List the names of staff who currently do not manage any properties.

{S.fName, S.lName | Staff(S)  (~(P) (PropertyForRent(P)(S.staffNo = 
P.staffNo)))}

Or
{S.fName, S.lName | Staff(S)  (P) (~PropertyForRent(P)  
     ~(S.staffNo = P.staffNo)))}
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Example - Tuple Relational Calculus

• List the names of clients who have viewed a      property for rent in 
Glasgow.

{C.fName, C.lName | Client(C)  ((V)(P) 
  (Viewing(V)  PropertyForRent(P)  (
  C.clientNo = V.clientNo)  
  (V.propertyNo=P.propertyNo)P.city =‘Glasgow’))}
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Tuple Relational Calculus

•Expressions can generate an infinite set. For 
example:
{S | ~Staff(S)}

• To avoid this [an unsafe query], add restriction that all values in result 
must be values in the domain of the expression. 
• Basically, tie all tuple variables to a relation
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Unsafe queries in TRC

• The following TRC expressions are safe
• { t(A) | u (R(u) AND u(A) = t(A)) }
• { t(A) | NOT u (R(u) AND u(A) ≠ t(A)) }
• { t(A) | u (R(u) => u(A) = t(A)) }

• The following TRC expressions are unsafe
• { t(A,B) | NOT R(t) }
• { t(A) | u(u(A) = t(A)) }
• { t(A) | u(R(u) AND t(A) = 8) }
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Domain Relational Calculus (DRC)

• Uses variables that take values from domains instead of tuples of 
relations. 

• If F(d1, d2, . . . , dn) stands for a formula composed of atoms and d1, d2, . . 
. , dn represent domain variables, then:

{d1, d2, . . . , dn | F(d1, d2, . . . , dn)}

is a general domain relational calculus expression.
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Example - Domain Relational Calculus

a) Find the names of all managers who earn more than £25,000.

{fN, lN | (sN, posn, sex, DOB, sal, bN) 
        (Staff (sN, fN, lN, posn, sex, DOB, sal, bN) 
         posn = ‘Manager’  sal > 25000)}
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Example - Domain Relational Calculus

b) List the staff who manage properties for rent in Glasgow.

   

{sN, fN, lN, posn, sex, DOB, sal, bN | 
(sN1,cty)(Staff(sN,fN,lN,posn,sex,DOB,sal,bN) 
 (PropertyForRent(pN, st, cty, pc, typ, rms, 
   rnt,oN, sN1, bN1) 
(sN=sN1) 
cty=‘Glasgow’)}
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Example - Domain Relational Calculus

c) List the names of staff who currently do not manage any 
properties for rent.   

{fN, lN | (sN) 
  (Staff(sN,fN,lN,posn,sex,DOB,sal,bN) 
  (~(sN1) (PropertyForRent(pN, st, cty, pc, typ, 
                   rms, rnt,oN, sN1, bN1) (sN = sN1))))}

Note: for brevity, some attributes here were not bound but 
should have been. See text book p. 106 (Third Edition), p. 
108 (Fourth Edition).

You should always bind non-free variables in assignments and 
exams.
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Example - Domain Relational Calculus

d) List the names of clients who have viewed a property for rent 
in Glasgow.

   

{fN, lN | (cN, cN1, pN, pN1, cty) 
  (Client(cN, fN, lN,tel, pT, mR) 
  Viewing(cN1, pN1, dt, cmt) 
   PropertyForRent(pN, st, cty, pc, typ, 
                   rms, rnt,oN, sN, bN) 
   (cN = cN1) (pN = pN1) cty = ‘Glasgow’)}
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Domain Relational Calculus
• When restricted to safe expressions, domain relational calculus is 

equivalent to tuple relational calculus restricted to safe 
expressions, which is equivalent to relational algebra. 

• Means every relational algebra expression has an equivalent 
relational calculus expression, and vice versa.
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Why Relational Calculus?
• Easy queries can be written in SQL immediately
• Difficult queries require, either:
• Very much experience; or
• Trial-and-error iterative approach; or
• Good understanding of Relational Calculus

• SQL, like RC, is a declarative language
•With some procedural ingredients (e.g. union)

• Quantifiers in RC are directly translated in SQL (EXISTS)
• Following formal translation algorithms exist:
• From Calculus to SQL
• From SQL to Algebra
• From Algebra to Calculus
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Overview of Query Processing
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Remarks about the Relational 
Calculus

• Corresponds to Predicate Logic
• A.k.a First Order Logic

• Formally, a query is a function mapping a set of relations to a single 
relation
• Same expressive power as Relational Algebra
• Same theoretical results
• If a query language can express the same queries as the Relational 

Calculus, then it is relationally complete
• RC, like RA, does not have aggregate functions such as Count, and 

also not grouping
• These are extra features provided by SQL
• Instead, joining can be used for some types of counting

64



Other Languages
• Transform-oriented languages are non-procedural languages that use 

relations to transform input data into required outputs (e.g. SQL).

• Graphical languages provide user with picture of the structure of the 
relation. User fills in example of what is wanted and system returns 
required data in that format (e.g. QBE).
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Other Languages
• 4GLs can create complete customized application using limited set 

of commands in a user-friendly, often menu-driven environment.

• Some systems accept a form of natural language, sometimes called a 
5GL, although this development is still a an early stage.
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