
DBMS Chap 4

Advanced SQL with integrity, Security and
Authorization

Nested Sub Queries
A subquery is a query, which is nested into another SQL query and
embedded with SELECT, INSERT, UPDATE or DELETE statement along
with the various operators.
We can also nest the subquery with another subquery.
A subquery is known as the inner query, and the query that contains
subquery is known as the outer query.
The inner query executed first gives the result to the outer query, and then
the main/outer query will be performed.
MySQL allows us to use subquery anywhere, but it must be closed within
parenthesis.
All subquery forms and operations supported by the SQL standard will be
supported in MySQL also.

Rules to use sub-queries

•Subqueries should always use in parentheses.
• If the main query does not have multiple columns for subquery, then a
subquery can have only one column in the SELECT command.
•We can use various comparison operators with the subquery, such as >,
<, =, IN, ANY, SOME, and ALL. A multiple-row operator is very
useful when the subquery returns more than one row.
•We cannot use the ORDER BY clause in a subquery, although it can
be used inside the main query.
• If we use a subquery in a set function, it cannot be immediately
enclosed in a set function.

Advantages of using sub-queries

•The subqueries make the queries in a structured form that allows us to
isolate each part of a statement.
•The subqueries provide alternative ways to query the data from the
table; otherwise, we need to use complex joins and unions.
•The subqueries are more readable than complex join or union
statements.

MySQL Subquery Syntax

SELECT column_list (s) FROM table_name

WHERE column_name OPERATOR

(SELECT column_list (s) FROM table_name [WHERE]);

MySQL Subquery Example

• SQL statement that returns the employee detail whose id matches in
a subquery:

Output

•employee detail whose income is more than 350000

• find employee details with maximum income

SQL Joins

•SQL Join operation combines data or rows from two or more tables
based on a common field between them.
•SQL JOIN clause is used to query and access data from multiple tables
by establishing logical relationships between them.
• It can access data from multiple tables simultaneously using common
key values shared across different tables.
•SQL JOIN can be used with multiple tables.
• It can also be paired with other clauses, the most popular use will be
using JOIN with WHERE clause to filter data retrieval.

Types of Joins

•INNER JOIN:
•LEFT JOIN:
•RIGHT JOIN:
•CROSS JOIN:

1. INNER JOIN

•Returns records that have matching values in both tables.

1. INNER JOIN

1. INNER JOIN

2. LEFT JOIN

•Returns all records from the left table, and the matched records from
the right table.

2. LEFT JOIN

2. LEFT JOIN

3. RIGHT JOIN

•Returns all records from the right table, and the matched records from
the left table.

3. RIGHT JOIN

3. RIGHT JOIN

4. CROSS Join

•Returns all records from both tables

4. CROSS Join

VIEWS

•a view is a virtual table based on the result-set of an SQL statement.

•A view also has rows and columns like tables, but a view doesn’t store data
on the disk like a table.

•A view contains rows and columns, just like a real table. The fields in a view
are fields from one or more real tables in the database.

•You can add SQL statements and functions to a view and present the data as
if the data were coming from one single table.

•A view is created with the CREATE VIEW.

•A View can either have all the rows of a table or specific rows based on
certain conditions.

Benefit of Using Views

• Simplicity: Instead of writing complex joins & queries, views provide a way
of writing simple SELECT statements.

•Enhanced Security: Views expose only the data to the third-party apps and
hide the internal details like table structure, attributes, etc, thus adding
extra security.

•Consistency: By writing views instead of common queries, we can write a
view that avoids multiple declarations & definitions of the same queries
and eventually provides a centralized way.

1. Create a View Based On Single Table

Let’s us create a view named “IITHyderabadStudentsView” from the StudentDetails table. This view selects the students from the StudentDetails table who study in
“IIT Hyderabad” university and outputs their details like student id, name, and age.

2. Create a View Based On Multiple Tables
With JOIN Clause

Let’s us create a view named “PythonEnrolledView” using the StudentDetails, CourseDetails, and EnrolledIn table. This view outputs the students who are enrolled in “Python
Fundamentals” course the details as student id, name, and age.

3. Update View

There are certain conditions that need to be satisfied to update a view. If any
one of these conditions is not met, then we are not allowed to update the
view.

•The View should be created from a single table. If the view is created using
multiple tables then we will not be allowed to update the view.

•The View should not be created using nested queries or complex queries.

•The View should have all NOT NULL values.

•The SELECT statement should not have the DISTINCT keyword.

•The SELECT statement which is used to create the view should not
include GROUP BY clause or ORDER BY clause.

Update View Definition/Structure

•To update the view for adding or remove columns and rows by
changing WHERE clause condition, we can use CREATE OR REPLACE
VIEW statement.

4. Insert Into View

•To insert the new row into the view, we can do it in a similar way just
like how we do it for normal tables.

5. Delete From View

6. Drop View

Trigger
A trigger in MySQL is a set of SQL statements that reside in a system catalog. It is a special type of stored procedure that
is invoked automatically in response to an event. Each trigger is associated with a table, which is activated on any DML
statement such as INSERT, UPDATE, or DELETE.

A trigger is called a special procedure because it cannot be called directly like a stored procedure. The main difference
between the trigger and procedure is that a trigger is called automatically when a data modification event is made
against a table. In contrast, a stored procedure must be called explicitly.

 triggers are of two types: row-level triggers and statement-level triggers.

Row-Level Trigger: It is a trigger, which is activated for each row by a triggering statement such as insert, update, or
delete. For example, if a table has inserted, updated, or deleted multiple rows, the row trigger is fired automatically for
each row affected by the insert, update, or delete statement.

Statement-Level Trigger: It is a trigger, which is fired once for each event that occurs on a table regardless of how many
rows are inserted, updated, or deleted.

https://www.javatpoint.com/mysql-insert
https://www.javatpoint.com/mysql-update
https://www.javatpoint.com/mysql-delete

Use of Triggers
○ Triggers help us to enforce business rules.
○ Triggers help us to validate data even before they are inserted or updated.
○ Triggers help us to keep a log of records like maintaining audit trails in tables.
○ SQL triggers provide an alternative way to check the integrity of data.
○ Triggers provide an alternative way to run the scheduled task.
○ Triggers increases the performance of SQL queries because it does not need to compile each

time the query is executed.
○ Triggers reduce the client-side code that saves time and effort.
○ Triggers help us to scale our application across different platforms.
○ Triggers are easy to maintain.

Limitations of Using Triggers

○ MySQL triggers do not allow to use of all validations; they only provide extended validations.
For example, we can use the NOT NULL, UNIQUE, CHECK and FOREIGN KEY constraints
for simple validations.

○ Triggers are invoked and executed invisibly from the client application. Therefore, it isn't easy
to troubleshoot what happens in the database layer.

○ Triggers may increase the overhead of the database server.

Components of Trigger

1. Event: SQL statement that causes trigger to fire.

2. Condition: A condition that must be satisfied for execution of
trigger.

3. Action: A code that will be executed when triggering condition
satisfies and the trigger is activated.

Types of Triggers

1. Before Insert: It is activated before the insertion of data into the table.
2. After Insert: It is activated after the insertion of data into the table.
3. Before Update: It is activated before the update of data in the table.
4. After Update: It is activated after the update of the data in the table.
5. Before Delete: It is activated before the data is removed from the table.
6. After Delete: It is activated after the deletion of data from the table.

https://www.javatpoint.com/mysql-before-insert-trigger
https://www.javatpoint.com/mysql-after-insert-trigger
https://www.javatpoint.com/mysql-before-update-trigger
https://www.javatpoint.com/mysql-after-update-trigger
https://www.javatpoint.com/mysql-before-delete-trigger
https://www.javatpoint.com/mysql-after-delete-trigger

Example
mysql> CREATE TABLE account (acct_num INT, amount DECIMAL(10,2));
Query OK, 0 rows affected (0.03 sec)

mysql> CREATE TRIGGER ins_sum BEFORE INSERT ON account
 FOR EACH ROW SET @sum = @sum + NEW.amount;
Query OK, 0 rows affected (0.01 sec)

The CREATE TRIGGER statement creates a trigger named ins_sum that is associated with the account table. It also includes clauses that specify

the trigger action time, the triggering event, and what to do when the trigger activates:

● The keyword BEFORE indicates the trigger action time. In this case, the trigger activates before each row inserted into the table. The

other permitted keyword here is AFTER.

● The keyword INSERT indicates the trigger event; that is, the type of operation that activates the trigger. In the example, INSERT

operations cause trigger activation. You can also create triggers for DELETE and UPDATE operations.

● The statement following FOR EACH ROW defines the trigger body; that is, the statement to execute each time the trigger activates,

which occurs once for each row affected by the triggering event. In the example, the trigger body is a simple SET that accumulates into a

user variable the values inserted into the amount column. The statement refers to the column as NEW.amount which means “the value of

the amount column to be inserted into the new row.”

https://dev.mysql.com/doc/refman/8.4/en/create-trigger.html
https://dev.mysql.com/doc/refman/8.4/en/insert.html
https://dev.mysql.com/doc/refman/8.4/en/delete.html
https://dev.mysql.com/doc/refman/8.4/en/update.html
https://dev.mysql.com/doc/refman/8.4/en/set-variable.html

To use the trigger, set the accumulator variable to zero, execute an INSERT statement, and then see
what value the variable has afterward:

In this case, the value of @sum after the INSERT statement has executed is 14.98 + 1937.50 - 100, or

1852.48.

To destroy the trigger, use a DROP TRIGGER statement. You must specify the schema name if the

trigger is not in the default schema:

https://dev.mysql.com/doc/refman/8.4/en/insert.html
https://dev.mysql.com/doc/refman/8.4/en/insert.html
https://dev.mysql.com/doc/refman/8.4/en/drop-trigger.html

mysql> DROP TRIGGER ins_sum;

If you drop a table, any triggers for the table are also dropped.

Trigger names exist in the schema namespace, meaning that all triggers must have

unique names within a schema. Triggers in different schemas can have the same

name.

It is possible to define multiple triggers for a given table that have the same trigger

event and action time. For example, you can have two BEFORE UPDATE triggers

for a table. By default, triggers that have the same trigger event and action time

activate in the order they were created. To affect trigger order, specify a clause after

FOR EACH ROW that indicates FOLLOWS or PRECEDES and the name of an

existing trigger that also has the same trigger event and action time. With

FOLLOWS, the new trigger activates after the existing trigger. With PRECEDES,

the new trigger activates before the existing trigger.

Privileges
The authority or permission to access a named object as advised manner, for example, permission to access a table. Privileges can allow
permitting a particular user to connect to the database. In, other words privileges are the allowance to the database by the database object.

● Database privileges — A privilege is permission to execute one particular type of SQL statement or access a second persons’

object. Database privilege controls the use of computing resources. Database privilege does not apply to the Database

administrator of the database.

● System privileges — A system privilege is the right to perform an activity on a specific type of object. for example, the privilege

to delete rows of any table in a database is system privilege. There are a total of 60 different system privileges. System privileges

allow users to CREATE, ALTER, or DROP the database objects.

● Object privilege — An object privilege is a privilege to perform a specific action on a particular table, function, or package. For

example, the right to delete rows from a table is an object privilege. For example, let us consider a row of table

GEEKSFORGEEKS that contains the name of the employee who is no longer a part of the organization, then deleting that row is

considered as an object privilege. Object privilege allows the user to INSERT, DELETE, UPDATE, or SELECT the data in the

database object

https://www.geeksforgeeks.org/sql-tutorial/

Roles :

A role is a mechanism that can be used to allow authorization. A person or a group of people can be allowed a
role or group of roles. By many roles, the head can manage access privileges very easily. The roles are provided
by the database management system for easy and managed or controlled privilege management.

Properties –
The following are the properties of the roles which allow easy privilege management inside a database:

● Reduced privilege administration — The user can grant the privilege for a group of users who are

related instead of granting the same set of privileges to the users explicitly.

● Dynamic privilege management — If the privilege of the group changes then, only the right of role

needs to be changed.

● Application-specific security — The user can also protect the use of a role by using a password.

Applications can be created to allow a role when entering the correct and best password. Users are not

allowed the role if they do not know about the password.

https://www.geeksforgeeks.org/introduction-of-dbms-database-management-system-set-1/

CREATE USER Statement

The CREATE USER statement in MySQL is an essential command used to create new user accounts for database access. It
enables database administrators to define which users can connect to the MySQL database server and specify their login
credentials.

CREATE USER in MySQL
● The CREATE USER statement in SQL is used to create a new user and a password to access that user.

● MySQL allows us to specify which user account can connect to a database server. The user account details in MySQL

contain two information – username and host from which the user is trying to connect in the format

username@host-name.

● If the admin user is connecting through localhost then the user account will be admin@localhost. MySQL stores the

user account in the user grant table of the MySQL database.

● The CREATE USER statement in MySQL allows us to create new MySQL accounts or in other words, the CREATE

USER statement is used to create a database account that allows the user to log into the MySQL database.

Syntax: CREATE USER user_account IDENTIFIED BY password;

https://www.geeksforgeeks.org/sql-tutorial/
https://www.geeksforgeeks.org/what-is-mysql/
https://www.geeksforgeeks.org/what-is-database/

Parameters

1. user_account: It is the name that the user wants to give to the database account. The

user_account should be in the format ‘username’@’hostname’

2. password: It is the password used to assign to the user_account.The password is specified in

the IDENTIFIED BY clause.

Examples of MySQL CREATE USER Statement
Let’s look at some examples of the CREATE USER command in MySQL, and understand it’s
working.

Example 1: MySQL Create Single User

In this example, we will create a new user “gfguser1” that connects to the MySQL database server
from the localhost with the password “abcd”.

Security

Security

Authorization

Authorization

Granting of Privileges

Authorization Graph

Security

Privileges in SQL

Grant Privilege

Roles

Revoking Authorization

Revoking Authorization

Assertions

• It is a statement in database that ensures certain conditions will
always exist in database.

• Syntax:
Create Assertion assertion_name check condition;

Assertions

• Example:

Ensuring licenses are recent or issued after the date 01-01-2023

Create Assertion rec_lic

Check (select count(*) from licenses

 where lic_renewal_date<‘2023-01-01’>);

Referential Integrity

• A value appearing in one relation (table) for given set of attributes
also appears in another table for another set of attributes is known
as referential integrity.

• It is used to maintain the consistency between two tables.

• The tuple in one relation refers only to existing tuple in another
relation.

Referential Integrity
• Employee has Did as foreign

key so this is known as
referential integrity.

• Here when we want to
insert data in Employee
table it has to be checked
first with Department table
Did.

