DBMS Chap 4

Advanced SQL with integrity, Security and
Authorization

Nested Sub Queries

A subquery 1s a query, which 1s nested into another SQL query and
embedded with SELECT, INSERT, UPDATE or DELETE statement along

with the various operators.
We can also nest the subquery with another subquery.

A subquery i1s known as the inner query, and the query that contains
subquery 1s known as the outer query.

The mner query executed first gives the result to the outer query, and then
the main/outer query will be performed.

MySQL allows us to use subquery anywhere, but it must be closed within
parenthesis.

All subquery forms and operations supported by the SQL standard will be
supported in MySQL also.

Rules to use sub-queries

* Subqueries should always use in parentheses.

* If the main query does not have multiple columns for subquery, then a
subquery can have only one column in the SELECT command.

* We can use various comparison operators with the subquery, such as >,
<, =, IN, ANY, SOME, and ALL. A multiple-row operator 1s very
useful when the subquery returns more than one row.

* We cannot use the ORDER BY clause 1n a subquery, although it can
be used 1nside the main query.

*If we use a subquery in a set function, it cannot be immediately
enclosed 1n a set function.

Advantages of using sub-queries

* The subqueries make the queries in a structured form that allows us to
1solate each part of a statement.

* The subqueries provide alternative ways to query the data from the
table; otherwise, we need to use complex joins and unions.

*The subqueries are more readable than complex join or union
statements.

MySQL Subquery Syntax

SELECT column_list (s) FROM table name
WHERE column_name OPERATOR
(SELECT column_list (s) FROM table name [WHERE]);

MySQL Subquery Example

Table: employees

MySQL 8.0 Command Line Client
mysql> SELECT * FROM employees;

Newyork | 200000
California | 3060000
Arizona | 1600000
Florida | 5000000
Georgia | 2508000
Alaska | 450000
California | 50060000
Florida | 350000
Alaska | 400000
Arizona | 600000
California |

Linklon
Kane

Adam
Macculam
Brayan
Stephen
Alexander

32
32
40
35
32
45
35
40
32
40
45

* SQL statement that returns the employee detail whose id matches in
a subquery:

SELECT emp_name, city, income FROM employees
WHERE emp_id IN (SELECT emp_id FROM employees);

MySQL 8.0 Command Line Client
Output

mysql> SELECT emp name, city, income FROM employees
WHERE emp id IN (SELECT emp_ id FROM employees);

| Newyork f 200000
Mark | California | 3280000
Donald | Arizona | 1806060800
Obama | Florida | S0
Linklon] Georgia f 2508000
Kane | Alaska ﬁ 450000
Adam] California | 5000000
Macculam | Florida f 3258000
Brayan | Alaska ﬁ 400000
Stephen | Arizona ﬁ 6668606060
Alexander | California |

* employee detail whose income is more than 350000

SELECT * FROM employees
WHERE emp_id IN (SELECT emp_id FROM employees
WHERE income > 350000);

MySQL 8.0 Command Line Client -] X

mysql> SELECT * FROM employees
WHERE emp id IN (SELECT emp id FROM employees
WHERE income > 350000);
Fommmmm - e Fommmm - Fommm - Fommmm - -
' | emp name | emp age | city | income |
- - Fommmm - Fommm - Fommmm - -
' | Donald | Arizona | 1000000 |
| Obama | Florida | 5000000 | | |
| Kane | Alaska | 450000 |
| Adam | California | 56060000 |
| Brayan | Alaska | 400000 |
| | Stephen | | Arizona | 6060000 |
Fommmm - e e e e -

o

4
3
45
3
3
4

D NN

 find employee details with maximum income

SELECT emp_name, city, income FROM employees
WHERE income = (SELECT MAX(income) FROM employees);

MySQL 8.0 Command Line Client

mysql> SELECT emp name, city, income FROM employees

-> WHERE income = (SELECT MAX(income) FROM employees);
fommmmmmans fommmmmaaas fommmmme -
| emp name | city | income |

frmmmmmmme frmmmmm e R et -
| Obama | Florida | 5000000 |
| Adam | California | 5000000 |

e frmmmmmmm e frmmmmmm - -

SQL Joins

* SQL Join operation combines data or rows from two or more tables
based on a common field between them.

* SQL JOIN clause 1s used to query and access data from multiple tables
by establishing logical relationships between them.

* [t can access data from multiple tables simultaneously using common
key values shared across different tables.

* SQL JOIN can be used with multiple tables.

* It can also be paired with other clauses, the most popular use will be
using JOIN with WHERE clause to filter data retrieval.

INNER JOIN

CROSS JOIN

Types of Joins

*INNER JOIN:
*LEFT JOIN:

*RIGHT JOIN:
*CROSS JOIN:

LEFT JOIN

RIGHT JOIN

1. INNER JOIN

* Returns records that have matching values in both tables.

SELECT columns
FROM tablel
INNER JOIN table2

| table2

ON tablel.column = table2.column;

1 INNER J OIN

musgl> SELECTFROM off scexs

offl(,er

off T C e nNname

|
1
l
!

ﬂ,_)(. e T

D¢_¢_p1k¢\ Lacknow
Uimal Faizabad
3 R..\ }n.l 1 Ln.u_. kKnow

TR BLE

'
!

-
-
.

-
-
-
.
.
.
-
.
=

o -~

FOWS i set Ssec D

muyusgl> SELECT>FROM students

Rohini
IL.&a 1 1L

SELECT officers.officer_name, officers.address, students.course_name
FROM officers

INNER JOIN students

ON officers.officer_id = students.student_id;

1. INNER JOIN

ysql> SELECT officers.officer_name, officers.address, students.course_nane
-)> FROM officers
~) INNER JOIN students

-> ON officers.officer_id = students.student_id;

Lt B B

offxcer “nane | address COUrse nane

Java

Hadoop
MongoDB

Lucknow
Faizahad

A

i Deepika
y Uimal
3

h
RJLLL i Mau

N S —
e s s s W e e

$ -

rows in set (B.00 sec)

2. LEFT JOIN

e Returns all records from the left table, and the matched records from
the right table.

SELECT columns
FROM tablel
LEFT [OUTER] JOIN table2

ON tablel.column = table2.column;

rows in set <B8_.898 sec
musgl> SELECT>»FROM officexs
S 3

off ice»_ name add»es

2. LEFT JOIN

Ajeet Mau
Deepika Lucknow
Uimal Faizabad
Rahul Lucknow

* anmn s & e $
L T

.
.
> -
.
L
.
L
.
.
»
L
» -

»rOows in set <B_8P8 secD

i

myusgl> SELECT»FROM students;

r— +
student __id

Rohini
Lallu

SELECT officers.officer name, officers.address, students.course_name
FROM officers
LEFT JOIN students

ON officers.officer_id = students.student _id:

2. LEFT JOIN

mysql> SELECT officers.officer_name, officers.address, students.course_name
-2 FROM officers
-> LEFT JOIN students
-2 ON offlcer officer_id = students.student_id;

. offlccr namne | address
’..--. S — ----_--.-._._.*..._...,.-ﬂ.._.....-

' Rjeet

: Dccpika
i Uimal
: Rahul

4

course_nane

!

JdUd

Lucknow Hadoop

Faizabhad | MongoDB
Lucknow NULL

-..-..-.* - G exp b Gxt b Gm8 G20 B R p—
4 rous 1n set (B.81 sec)

nysql)

3. RIGHT JOIN

* Returns all records from the right table, and the matched records from
the left table.

SELECT columns
FROM tablel
RIGHT [OUTER] JOIN table2

table1

ON tablel.column = table2.column;

3. RIGHT JOIN

PO WS in set <80_ 88 sec>
musg l> SELLECTFROM off icexs
-

off icex T add»re s s
— — — -— —— — e— —_— — _— — —_— - - -_— -— _— — S — S— _— — +
A jJgeet Mo
Deecepilka L.arc lknmnow
U imal s Fajiz=abad
Rahw 1L - TL.arec ko we

<P _8988 =ec O

-
=
-
>
-
-
-
-
-
-
.
=

-

+ (AR LR LR 2

SELECTFROM ==tudents=

u‘..-..-#..‘g A‘.I.Illll‘.l

SELECT officers.officer name, officers.address, students.course_name, students.student_name

FROM officers
RIGHT JOIN students

ON officers.officer id = students.student id:

3. RIGHT JOIN

SELECT officers.officer_name, officers.address, students.course_nane,
Sstudent_nane

FROM officers

RIGHT JOIN students

ON OffICCP offlccr 1d s Qtudento otudent 1d,
S > - * R —— =0 oup = M p—

offlccr_nanc ' addrcss course nanme Qtudcnt_nunc
Aryan
Rohini

lu\llu

JdUd
Hadoop
HongoDB

Ajeet Mau
Deepika Lucknow
Ulndl Fdl‘dhdd

- —-——— — - ——— -

rows 1in set (ﬂ Wl sec)

'.-
'
'
g
'
'
'
'
|
'
4

‘ M s s W e ‘

!
l
!
x

ysgl) o

4. CROSS Join

e Returns all records from both tables

SELECT column-lists

FROM tablel
CROSS JOIN table2:

Table: customers

customer_id cust_name occupation income qualification
1 John Miller Developer 20000 Btech
2 Mark Robert Enginneer 40000 Btech
3 Reyan Watson Sdentists &0000 MSc
= Shane Trump Businessman 10000 MEBA
S Adam Obama Manager 80000 MBA
& Rincky Ponting Cricketer 200000 Btech
Table: contacts
contact_id cellphone homephone
1 6546645978 4565242557
2 8798634532 86524139549
3 8790744345 9874437396
= 7655654336 9934345363

SELECT *
FROM customers
CROSS JOIN contacts;

4. CROSS Join

|

W oW L R R R R R N b b b b s

customer_id cust_name

John Miller
John Miller
John Miller
John Miller
John Miller
John Miller
Mark Robert
Mark Robert
Mark Robert
Mark Robert
Mark Robert
Mark Robert

Reyan Watson Scientists
Reyan Watson Scientists
Reyan Watson Scientists

occupation income qualification
Developer 20000 Btech
Developer 20000 Btech
Developer 20000 Btech
Developer 20000 Btech
Developer 20000 Btech
Developer 20000 Btech
Enginneer 40000 Btech
Enginneer 40000 Btech
Enginneer 40000 Btech
Enginneer 40000 Btech
Enginneer 40000 Btech
Enginneer 40000 Btech
60000 MSc
60000 MSc
60000 MSc

contact_id cellphone

1

W N = O o bW = bW

6546645978
8798634532
8790744345

7655654336
(HULL

6546645978
8798634532
8790744345

7655654336
HULL |

6546645978
8798634532
8790744345

homephone

4565242557
8652413954
9874437396
9934345363
6786507067
9086053684
4565242557
8652413954
9874437396
9934345363
6786507067
9086053684
4565242557
8652413954
9874437396

VIEWS

e a view is a virtual table based on the result-set of an SQL statement.

* A view also has rows and columns like tables, but a view doesn’t store data
on the disk like a table.

* A view contains rows and columns, just like a real table. The fields in a view
are fields from one or more real tables in the database.

*You can add SQL statements and functions to a view and present the data as
if the data were coming from one single table.

e A view is created with the CREATE VIEW.

* A View can either have all the rows of a table or specific rows based on
certain conditions.

Benefit of Using Views

* Simplicity: Instead of writing complex joins & queries, views provide a way
of writing simple SELECT statements.

* Enhanced Security: Views expose only the data to the third-party apps and
hide the internal details like table structure, attributes, etc, thus adding

extra security.

* Consistency: By writing views instead of common queries, we can write a
view that avoids multiple declarations & definitions of the same queries
and eventually provides a centralized way.

1. Create a View Based On Single Table

StudentDetails Table:

CREATE VIEW <view_name> AS

sid sname age university
. _— . — SELECT <columnl>, <columnZ2>......, <columnN>
2 Aaditya 24 SRM University FROM <table-name>
3 Aashish 23 IT Hyderabad WHERE [conditions];
4 John 25 Mumbai University
5 Shruti 24 IT Hyderabad
6 Leena 25 Mumbai University

Let’s us create a view named “lITHyderabadStudentsView” from the StudentDetails table. This view selects the students from the StudentDetails table who study in
“IIT Hyderabad” university and outputs their details like student id, name, and age.

CREATE VIEW IITHyderabadStudentsView AS
SELECT sid, sname, age

FROM StudentDetails

WHERE university = "IIT Hyderabad”;

‘mysql> SELECT * FROM IITHyderabadStudentsView;

Girish
Aashish
Shruti

2. Create a View Based On Multiple Tables
With JOIN Clause

CREATE VIEW <view_name> AS CREATE VIEW PythonEnrolledView AS

SELECT <column1>, <column2>......, <columnN> SELECT S.s1d, S.sname, S.age

FROM <table1> FROM StudentDetails S JOIN EnrolledIn E ON S.sid = E.sid
[INNER [LEFT | RIGHT | FULL] JOIN <table2> ON <joining-column> JOIN CourseDetails C ON C.cid = E.cid

WHERE [condition1 | condition2 |J; WHERE C.cname = "Python Fundamentals”;

Let’s us create a view named “PythonEnrolledView” using the StudentDetails, CourseDetails, and EnrolledIn table. This view outputs the students who are enrolled in “Python
Fundamentals” course the details as student id, name, and age.

SELECT * FROM PythonEnrolledView;

imysql> SELECT * FROM PythonEnrolledView;
e e fm———— +

| sid | sname
= e +————— -

| 2 | Aaditya |
4 | John
t———— o e -

2 rows in set (0.01 sec)

3. Update View

There are certain conditions that need to be satisfied to update a view. If any
one of these conditions is not met, then we are not allowed to update the
vView.

*The View should be created from a single table. If the view is created using
multiple tables then we will not be allowed to update the view.

T
T
T
T

ne View should not be created using nested queries or complex queries.
ne View should have all NOT NULL values.
ne SELECT statement should not have the DISTINCT keyword.

ne SELECT statement which is used to create the view should not

include GROUP BY clause or ORDER BY clause.

Update View Definition/Structure

* To update the view for adding or remove columns and rows by
changing WHERE clause condition, we can use CREATE OR REPLACE

VIEW statement.
CREATE OR REPLACE VIEW <view_name> AS

SELECT <columnl>, <columnZ>,, <columnN>
FROM <table_name>

WHERE [condition];

CREATE OR REPLACE VIEW IITHyderabadStudentsView AS
SELECT sname, age

FROM StudentDetails
WHERE university = "IIT Hyderabad";

4. Insert Into View

*To insert the new row into the view, we can do it in a similar way just
like how we do it for normal tables.

INSERT INTO <view name>(<columnl>, <column2>, <column3>,......... \

VALUES(<valuel>, <value2>, <value3>,...........)5

‘mysql> SELECT * FROM StudentDetails;

IIT Hyderabad
SRM University
IIT Hyderabad
Mumbai University
IIT Hyderabad
Mumbai University

mysql> INSERT INTO IITHyderabadStudentsView(sid, sname, age) VALUES(7, "Tenali Rama",
Query OK, 1 row affected (0.01 sec)

mysql> SELECT * FROM StudentDetails;
| sid sname | university

IIT Hyderabad
Aaditya SRM University
Aashish IIT Hyderabad
John Mumbai University
Shruti IIT Hyderabad
Leena Mumbai University
Tenali Rama IIT Hyderabad

7 rows in set (0.00 sec)

5. Delete From View

DELETE FROM <view name> WHERE [condition);

DELETE FRON IITHyderabadStudentsView WHERE snane = “Tenall Rama';

‘mysql> SELECT *x FROM IITHyderabadStudentsView;

Aashish
Shruti
Tenall Rama

4 rows in set (0.01 sec)

‘mysql> DELETE FROM IITHyderabadStudentsView WHERE sname = "Tenall Rama";
Query OK, 1 row affected (0.01 sec)

imysql> SELECT % FROM IITHyderabadStudentsView;
$ommmm fmm———— TR +

| sid | sname | age |

3 rows in set (0.00 sec)

6. Drop View

DROP VIEW <view_name>;

DROP VIEW PythonEnrolledView;

Trigger

A trigger in MySQL is a set of SQL statements that reside in a system catalog. It is a special type of stored procedure that
is invoked automatically in response to an event. Each trigger is associated with a table, which is activated on any DML
statement such as INSERT, UPDATE, or DELETE.

A trigger is called a special procedure because it cannot be called directly like a stored procedure. The main difference
between the trigger and procedure is that a trigger is called automatically when a data modification event is made
against a table. In contrast, a stored procedure must be called explicitly.

triggers are of two types: row-level triggers and statement-level triggers.

Row-Level Trigger: It is a trigger, which is activated for each row by a triggering statement such as insert, update, or
delete. For example, if a table has inserted, updated, or deleted multiple rows, the row trigger is fired automatically for
cach row affected by the insert, update, or delete statement.

Statement-Level Trigger: It is a trigger, which is fired once for each event that occurs on a table regardless of how many
rows are inserted, updated, or deleted.

https://www.javatpoint.com/mysql-insert
https://www.javatpoint.com/mysql-update
https://www.javatpoint.com/mysql-delete

Use of Triggers

Triggers help us to enforce business rules.

Triggers help us to validate data even before they are inserted or updated.

Triggers help us to keep a log of records like maintaining audit trails in tables.

SQL triggers provide an alternative way to check the integrity of data.

Triggers provide an alternative way to run the scheduled task.

Triggers increases the performance of SQL queries because it does not need to compile each
time the query is executed.

Triggers reduce the client-side code that saves time and effort.

Triggers help us to scale our application across different platforms.

Triggers are easy to maintain.

Limitations of Using Triggers

MySQL triggers do not allow to use of all validations; they only provide extended validations.
For example, we can use the NOT NULL, UNIQUE, CHECK and FOREIGN KEY constraints
for simple validations.

Triggers are invoked and executed invisibly from the client application. Therefore, it 1sn't easy
to troubleshoot what happens in the database layer.

Triggers may increase the overhead of the database server.

Components of Trigger

Event: SQL statement that causes trigger to fire.

Condition: A condition that must be satisfied for execution of
trigger.

Action: A code that will be executed when triggering condition
satisfies and the trigger is activated.

Types of Triggers

- Before Insert: It 1s activated before the insertion of data into the table.

- After Insert: It 1s activated after the insertion of data into the table.

- Before Update: It 1s activated before the update of data in the table.
- After Update: It is activated after the update of the data 1n the table.

- Before Delete: It 1s activated before the data i1s removed from the table.
- After Delete: It 1s activated after the deletion of data from the table.

https://www.javatpoint.com/mysql-before-insert-trigger
https://www.javatpoint.com/mysql-after-insert-trigger
https://www.javatpoint.com/mysql-before-update-trigger
https://www.javatpoint.com/mysql-after-update-trigger
https://www.javatpoint.com/mysql-before-delete-trigger
https://www.javatpoint.com/mysql-after-delete-trigger

Example

mysql> CREATE TABLE account (acct num INT, amount DECIMAL(10,2));
Query OK, 0 rows affected (0.03 sec)

mysql> CREATE TRIGGER ins_sum BEFORE INSERT ON account
FOR EACH ROW SET @sum = (@sum + NEW .amount;
Query OK, 0 rows affected (0.01 sec)

The CREATE TRIGGER statement creates a trigger named ins_sum that is associated with the account table. It also includes clauses that specify

the trigger action time, the triggering event, and what to do when the trigger activates:

o The keyword BEFORE indicates the trigger action time. In this case, the trigger activates before each row inserted into the table. The
other permitted keyword here 1s AFTER.

o The keyword INSERT indicates the trigger event; that is, the type of operation that activates the trigger. In the example, INSERT
operations cause trigger activation. You can also create triggers for DELETE and UPDATE operations.

o The statement following FOR EACH ROW defines the trigger body; that is, the statement to execute each time the trigger activates,
which occurs once for each row affected by the triggering event. In the example, the trigger body is a simple SET that accumulates into a
user variable the values inserted into the amount column. The statement refers to the column as NEW.amount which means “the value of

the amount column to be inserted into the new row.”

https://dev.mysql.com/doc/refman/8.4/en/create-trigger.html
https://dev.mysql.com/doc/refman/8.4/en/insert.html
https://dev.mysql.com/doc/refman/8.4/en/delete.html
https://dev.mysql.com/doc/refman/8.4/en/update.html
https://dev.mysql.com/doc/refman/8.4/en/set-variable.html

To use the trigger, set the accumulator variable to zero, execute an INSERT statement, and then see
what value the variable has afterward:

mysql> SET @sum = O;
mysql> INSERT INTO account VALUES(137,14.98),(141,1937.50),(97,-100.00);
mysql> SELECT @sum AS 'Total amount inserted’',

In this case, the value of @sum after the INSERT statement has executed 1s 14.98 + 1937.50 - 100, or

1852.48.

To destroy the trigger, use a DROP TRIGGER statement. You must specify the schema name if the

trigger 1s not in the default schema:

https://dev.mysql.com/doc/refman/8.4/en/insert.html
https://dev.mysql.com/doc/refman/8.4/en/insert.html
https://dev.mysql.com/doc/refman/8.4/en/drop-trigger.html

mysql> DROP TRIGGER ins sum:;

If you drop a table, any triggers for the table are also dropped.

Trigger names exist in the schema namespace, meaning that all triggers must have
unique names within a schema. Triggers in different schemas can have the same

name.

It 1s possible to define multiple triggers for a given table that have the same trigger
event and action time. For example, you can have two BEFORE UPDATE triggers
for a table. By default, triggers that have the same trigger event and action time

activate 1n the order they were created. To affect trigger order, specify a clause after

FOR EACH ROW that indicates FOLLOWS or PRECEDES and the name of an

o o
Privileges
The authority or permission to access a named object as advised manner, for example, permission to access a table. Privileges can allow
permitting a particular user to connect to the database. In, other words privileges are the allowance to the database by the database object.

e Database privileges — A privilege is permission to execute one particular type of SOQL statement or access a second persons’
object. Database privilege controls the use of computing resources. Database privilege does not apply to the Database

administrator of the database.

e System privileges — A system privilege is the right to perform an activity on a specific type of object. for example, the privilege
to delete rows of any table in a database is system privilege. There are a total of 60 different system privileges. System privileges

allow users to CREATE, ALTER, or DROP the database objects.

e Object privilege — An object privilege is a privilege to perform a specific action on a particular table, function, or package. For
example, the right to delete rows from a table is an object privilege. For example, let us consider a row of table
GEEKSFORGEEKS that contains the name of the employee who is no longer a part of the organization, then deleting that row is
considered as an object privilege. Object privilege allows the user to INSERT, DELETE, UPDATE, or SELECT the data in the

database object

https://www.geeksforgeeks.org/sql-tutorial/

Roles :

A role is a mechanism that can be used to allow authorization. A person or a group of people can be allowed a
role or group of roles. By many roles, the head can manage access privileges very easily. The roles are provided
by the database management system for easy and managed or controlled privilege management.

Properties -
The following are the properties of the roles which allow easy privilege management inside a database:

e Reduced privilege administration — The user can grant the privilege for a group of users who are
related instead of granting the same set of privileges to the users explicitly.

e Dynamic privilege management — If the privilege of the group changes then, only the right of role
needs to be changed.

o Application-specific security — The user can also protect the use of a role by using a password.
Applications can be created to allow a role when entering the correct and best password. Users are not

allowed the role if they do not know about the password.

https://www.geeksforgeeks.org/introduction-of-dbms-database-management-system-set-1/

CREATE USER Statement

The CREATE USER statement in MySQL is an essential command used to create new user accounts for database access. It
enables database administrators to define which users can connect to the MySQL database server and specify their login
credentials.

CREATE USER in MySQL
e The CREATE USER statement in SQL is used to create a new user and a password to access that user.

e MySOL allows us to specify which user account can connect to a database server. The user account details in MySQL
contain two information — username and host from which the user is trying to connect in the format
username@host-name.

e Ifthe admin user is connecting through localhost then the user account will be admin@localhost. MySQL stores the
user account in the user grant table of the MySQL database.

e The CREATE USER statement in MySQL allows us to create new MySQL accounts or in other words, the CREATE

USER statement is used to create a database account that allows the user to log into the MySQL database.

Syntax: CREATE USER user_account IDENTIFIED BY password;

https://www.geeksforgeeks.org/sql-tutorial/
https://www.geeksforgeeks.org/what-is-mysql/
https://www.geeksforgeeks.org/what-is-database/

Parameters

1. user_account: It is the name that the user wants to give to the database account. The
user_account should be in the format ‘username’@’hostname’
2. password: It is the password used to assign to the user account.The password is specified in

the IDENTIFIED BY clause.

Examples of MySQL CREATE USER Statement
Let’s look at some examples of the CREATE USER command in MySQL, and understand 1t’s
working.

Example 1: MySQL Create Single User

In this example, we will create a new user “gfguserl” that connects to the MySQL database server
from the localhost with the password “abcd”.

CREATE USER gfguseri@localhost IDENTIFIED BY 'abcd';

Security

m Security - protection from malicious attempts to steal or modify data.
Database system level

g Authentication and authorization mechanisms to allow specific users
access only to required data

g We concentrate on authorization in the rest of this chapter
Operating system level

Operating system super-users can do anything they want to the
database! Good operating system level security is required.

Network level: must use encryption to prevent
5] Eavesdropping (unauthorized reading of messages)

g Masquerading (pretending to be an authorized user or sending
messages supposedly from authorized users) \
\/*,

Security

Physical level

gl Physical access to computers allows destruction of data by
Intruders; traditional lock-and-key security is needed

5 Computers must also be protected from floods, fire, etc.
More in Chapter 17 (Recovery)

* Human level

Users must be screened to ensure that an authorized users do
not give access to intruders

Users should be trained on password selection and secrecy

Authorization

Forms of authorization on parts of the database:

® Read authorization - allows reading, but not modification of data.

B Insert authorization - allows insertion of new data, but not
modification of existing data.

® Update authorization - allows modification, but not deletion of
data.

® Delete authorization - allows deletion of data

Authorization

Forms of authorization to modify the database schema:
B Index authorization - allows creation and deletion of indices.
B Resources authorization - allows creation of new relations.

m Alteration authorization - allows addition or deletion of attributes in
a relation.

® Drop authorization - allows deletion of relations.

Granting of Privileges

The passage of authorization from one user to another may be
represented by an authorization graph.

The nodes of this graph are the users.
The root of the graph is the database administrator.
Consider graph for update authorization on loan.

An edge U; — U, indicates that user U, has granted update
authorization on loan to U;

T

DBA - U, - U,

Authorization Graph

Requirement: All edges in an authorization graph must be part of
some path originating with the database administrator

If DBA revokes grant from U,:
Grant must be revoked from U, since U, no longer has authorization

Grant must not be revoked from Ug since U has another
authorization path from DBA through U,

Must prevent cycles of grants with no path from the root:
DBA grants authorization to U,
U7 grants authorization to Ug
U8 grants authorization to U,
DBA revokes authorization from U,

Must revoke grant U, to Ug; and from U, to U, since there |s\/
path from DBA to U, or to Ug anymore.

Security

The grant statement is used to confer authorization
grant <privilege list>
on <relation name or view name> to <user list>
<user list> is:
a user-id

- public, which allows all valid users the privilege granted
A role (more on this later)

Granting a privilege on a view does not imply granting any
privileges on the underlying relations.

The grantor of the privilege must already hold the privilege on
the specified item (or be the database administrator). 0
b2

Privileges in SQL

select: allows read access to relation,or the ability to query using
the view

Example: grant users U,, U,, and U, select authorization on the branch
relation:

grant select on branchto U., U,, U,
insert: the ability to insert tuples
update: the ability to update using the SQL update statement
delete: the ability to delete tuples.
references: ability to declare foreign keys when creating relations.
usage: In SQL-92; authorizes a user to use a specified domain
all privileges: used as a short form for all the allowable privileges

Grant Privilege

® with grant option: allows a user who is granted a privilege to
pass the privilege on to other users.

" Example:
grant select on branch to U, with grant option
gives U, the select privileges on branch and allows U, to grant this
privilege to others

Roles

Roles permit common privileges for a class of users can be
specified just once by creating a corresponding “role”

Privileges can be granted to or revoked from roles, just like user
Roles can be assigned to users, and even to other roles

SQL:1999 supports roles

create role fteller
create role manager

grant select on branch to teller
grant update (balance) on account to teller
grant all privileges on account to manager

grant feller to manager

grant feller to alice, bob
grant manager to avi

Revoking Authorization

The revoke statement is used to revoke authorization.
revoke<privilege list>
on <relation name or view name> from <user list> [restrict|cascade]
Example:
revoke select on branch from U,, U,, U, cascade

Revocation of a privilege from a user may cause other users also
to lose that privilege; referred to as cascading of the revoke.

We can prevent cascading by specifying restrict:
revoke select on branch from U, U,, U, restrict

With restrict, the revoke command fails if cascading revokes
are required. i

Revoking Authorization

<privilege-list> may be all to revoke all privileges the revokee
may hold.

If <revokee-list> includes public all users lose the privilege
except those granted it explicitly.

If the same privilege was granted twice to the same user by
different grantees, the user may retain the privilege after the
revocation.

All privileges that depend on the privilege being revoked are also
revoked.

Assertions

. It 1s a statement 1n database that ensures certain conditions will
always exist in database.

. Syntax:

Create Assertion assertion name check condition;

Assertions

. Example:
Ensuring licenses are recent or issued after the date 01-01-2023

Create Assertion rec_lic
Check (select count(*) from licenses
where lic_renewal date<2023-01-01">);

Referential Integrity

.- A value appearing in one relation (table) for given set of attributes

also appears in another table for another set of attributes is known
as referential integrity.

It is used to maintain the consistency between two tables.

. The tuple in one relation refers only to existing tuple in another
relation.

Referential Integrity

Referential
integrity
Emp_name D ™
= Gpgir;ame
Employee Departmen
Emp T g
— P Table Department Table
P_ Emp_name | Digd Did | Dept_name
| Sachin 20 10 | HR -
2 Suhas 10 20 | TIS
3 Jay 20 30 | L&D
4 Om 10

Employee has Did as foreign
key so this is known as
referential integrity.

Here when we want to
insert data in Employee
table it has to be checked
first with Department table
Did.

