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Built-in Data Types in SQL Built-in Data Types in SQL 

 date:  Dates, containing a (4 digit) year, month and date
 Example:  date ‘2005-7-27’

 time:  Time of day, in hours, minutes and seconds.
 Example:  time ‘09:00:30’         time ‘09:00:30.75’

 timestamp: date plus time of day
 Example:  timestamp  ‘2005-7-27 09:00:30.75’

 interval:  period of time
 Example:   interval  ‘1’ day
 Subtracting a date/time/timestamp value from another gives an 

interval value
 Interval values can be added to date/time/timestamp values
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Build-in Data Types in SQL (Cont.)Build-in Data Types in SQL (Cont.)

 Can extract values of individual fields from date/time/timestamp
 Example:   extract (year from r.starttime) 

 Can cast string types to date/time/timestamp 
 Example:   cast   <string-valued-expression> as date
 Example:   cast   <string-valued-expression> as time
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User-Defined TypesUser-Defined Types

 create type construct in SQL creates user-defined type

create type Dollars as numeric (12,2) final 

 create domain construct in SQL-92 creates user-defined domain 
types

create domain person_name char(20) not null

 Types and domains are similar.  Domains can have constraints, such 
as not null, specified on them.
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Domain ConstraintsDomain Constraints

 Domain constraints are the most elementary form of integrity 
constraint. They test values inserted in the database, and test queries 
to ensure that the comparisons make sense. 

 New domains can be created from existing data types
 Example: create domain Dollars numeric(12, 2)

         create domain Pounds numeric(12,2)
 We cannot assign or compare a value of type Dollars to a value of 

type Pounds.  
 However, we can convert type as below

         (cast r.A as Pounds) 
(Should also multiply by the dollar-to-pound conversion-rate)
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Large-Object TypesLarge-Object Types

 Large objects (photos, videos, CAD files, etc.) are stored as a large 
object:
 blob: binary large object -- object is a large collection of 

uninterpreted binary data (whose interpretation is left to an 
application outside of the database system)

 clob: character large object -- object is a large collection of 
character data

 When a query returns a large object, a pointer is returned rather 
than the large object itself.

 Bfile
 Nclob
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Integrity ConstraintsIntegrity Constraints

 Integrity constraints guard against accidental damage to the 
database, by ensuring that authorized changes to the 
database do not result in a loss of data consistency. 
 A checking account must have a balance greater than 

$10,000.00
 A salary of a bank employee must be at least $4.00 an 

hour
 A customer must have a (non-null) phone number
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  Constraints on a Single Relation Constraints on a Single Relation 

 not null
 primary key
 unique
 check (P ), where P is a predicate
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Not Null Constraint Not Null Constraint 

 Declare branch_name for branch is not null       
          branch_name  char(15) not null

 Declare the domain Dollars to be not null       

        create domain Dollars numeric(12,2) not null
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The Unique ConstraintThe Unique Constraint

 unique ( A1, A2, …, Am)

 The unique specification states that the attributes
          A1, A2, … Am

form a candidate key.
 Candidate keys are permitted to be null (in contrast to primary keys).
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The check clauseThe check clause

 check (P ), where P is a predicate

Example:  Declare branch_name as the primary key for 
branch and ensure that the values of assets are non-
negative.

create table branch
      (branch_name     char(15),
       branch_city        char(30),
       assets             integer,
       primary key (branch_name),
       check (assets >= 0))
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The check clause (Cont.)The check clause (Cont.)

 The check clause in SQL-92 permits domains to be restricted:
 Use check clause to ensure that an hourly_wage domain allows 

only values greater than a specified value.
create domain hourly_wage numeric(5,2)

constraint value_test check(value > = 4.00)
 The domain has a constraint that ensures that the hourly_wage is 

greater than 4.00
 The clause constraint value_test is optional; useful to indicate 

which constraint an update violated.
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Referential IntegrityReferential Integrity

 Ensures that a value that appears in one relation for a given set of 
attributes also appears for a certain set of attributes in another relation.
 Example:  If “Perryridge” is a branch name appearing in one of the 

tuples in the account relation, then there exists a tuple in the branch 
relation for branch “Perryridge”.

 Primary and candidate keys and foreign keys can be specified as part of 
the SQL create table statement:
 The primary key clause lists attributes that comprise the primary key.
 The unique key clause lists attributes that comprise a candidate key.
 The foreign key clause lists the attributes that comprise the foreign 

key and the name of the relation referenced by the foreign key. By 
default, a foreign key references the primary key attributes of the 
referenced table.
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Referential Integrity in SQL – ExampleReferential Integrity in SQL – Example

create table customer
(customer_name char(20),
customer_street char(30),
customer_city char(30),
primary key (customer_name ))

create table branch
(branch_name char(15),
branch_city char(30),
assets numeric(12,2),
primary key (branch_name ))
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Referential Integrity in SQL – Example (Cont.)Referential Integrity in SQL – Example (Cont.)

create table account
(account_number char(10),
branch_name char(15),
balance integer,
primary key (account_number), 
foreign key (branch_name) references branch )

create table depositor
(customer_name char(20),
account_number char(10),
primary key (customer_name, account_number),
foreign key (account_number ) references account,
foreign key (customer_name ) references customer )
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Referential Integrity in SQL – Example (Cont.)Referential Integrity in SQL – Example (Cont.)

When a referential Integrity constraint is violated, the normal 
procedure is to reject the action that cause the violation

Exception 
delete, update

create table depositor
(customer_name char(20),
account_number char(10),
primary key (customer_name, account_number),
foreign key (account_number ) references account on 
delete cascade,
foreign key (customer_name ) references customer ) on 
delete cascade
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Referential Integrity in SQL – Example (Cont.)Referential Integrity in SQL – Example (Cont.)

NULL values complicates the Referential Integrity  constraint

Attributes of foreign keys are allowed to be null unless 
otherwise declared

IC can be added by using
            alter table table-name add constraint constraint-name
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AssertionsAssertions

 An assertion is a predicate expressing a condition that we wish the 
database always to satisfy.

 An assertion in SQL takes the form
create assertion <assertion-name> check <predicate>

 When an assertion is made, the system tests it for validity, and tests it 
again on every update that may violate the assertion
 This testing may introduce a significant amount of overhead; 

hence assertions should be used with great care.
 Asserting 

      for all X, P(X) 
is achieved in a round-about fashion using   
      not exists X such that not P(X)
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Assertion ExampleAssertion Example

 Every loan has at least one borrower who maintains an account with a 
minimum balance or $1000.00

    create assertion balance_constraint check
    (not exists (
         select * 

              from loan
       where not exists ( 

             select *
         from borrower, depositor, account
         where loan.loan_number = borrower.loan_number

           and borrower.customer_name = depositor.customer_name
           and depositor.account_number = account.account_number
           and account.balance >= 1000)))
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Assertion ExampleAssertion Example

 The sum of all loan amounts for each branch must be less than the 
sum of all account balances at the branch.

     create assertion sum_constraint check
     (not exists (select * 
                         from branch

                     where (select sum(amount )
                                     from loan

                             where loan.branch_name = 
                                                 branch.branch_name )

                            >= (select sum (amount ) 
                                      from account

                             where loan.branch_name = 
                                                 branch.branch_name )))
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AuthorizationAuthorization

Forms of authorization on parts of  the database:

 Read - allows reading, but not modification of data.
 Insert - allows insertion of new data, but not modification of existing data.
 Update - allows modification, but not deletion of data.
 Delete - allows deletion of data.

Forms of authorization to modify the database schema 
 Index - allows creation and deletion of indices.
 Resources - allows creation of new relations.
 Alteration - allows addition or deletion of attributes in a relation.
 Drop - allows deletion of relations.
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Authorization Specification in SQLAuthorization Specification in SQL

 The grant statement is used to confer authorization
grant <privilege list>
on <relation name or view name> to <user list>

 <user list> is:
 a user-id
 public, which allows all valid users the privilege granted
 A role 

 Granting a privilege on a view does not imply granting any privileges 
on the underlying relations.

 The grantor of the privilege must already hold the privilege on the 
specified item (or be the database administrator).
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Privileges in SQLPrivileges in SQL

 select: allows read access to relation,or the ability to query using 
the view
 Example: grant users U1, U2, and U3 select authorization on 

the branch relation:
grant select on branch to U1, U2, U3

 insert: the ability to insert tuples
 update: the ability  to update using the SQL update statement
 delete: the ability to delete tuples.
 all privileges: used as a short form for all the allowable privileges
 more in Chapter 8
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Revoking Authorization in SQLRevoking Authorization in SQL

 The revoke statement is used to revoke authorization.
revoke <privilege list>
on <relation name or view name> from <user list>

 Example:
revoke select on branch  from U1, U2, U3

 <privilege-list> may be all to revoke all privileges the revokee may 
hold.

 If <revokee-list> includes public, all users lose the privilege except 
those granted it explicitly.

 If the same privilege was granted twice to the same user by different 
grantees, the user may retain the privilege after the revocation.

 All privileges that depend on the privilege being revoked are also 
revoked.
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Embedded SQLEmbedded SQL

 The SQL standard defines embeddings of SQL in a variety of 
programming languages such as C, Java, and Cobol.

 A language to which SQL queries are embedded is referred to as a host 
language, and the SQL structures permitted in the host language 
comprise embedded SQL.

 The basic form of these languages follows that of the System R 
embedding of SQL into PL/I.

 EXEC SQL statement is used to identify embedded SQL request to the 
preprocessor

EXEC SQL <embedded SQL statement > END_EXEC
Note: this varies by language (for example, the Java embedding uses

                                                   # SQL { …. }; ) 
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Example QueryExample Query

 Specify the query in SQL and declare a cursor  for it
       EXEC SQL

    declare c cursor for 
    select depositor.customer_name, customer_city
    from depositor, customer, account
    where depositor.customer_name = customer.customer_name        
         and depositor account_number = account.account_number

and account.balance > :amount
       END_EXEC

 From within a host language, find the names and cities of 
customers with more than the variable amount dollars in some 
account.
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Embedded SQL (Cont.)Embedded SQL (Cont.)

 The open statement causes the query to be evaluated
EXEC SQL open c END_EXEC

 The fetch statement causes the values of one tuple in the query result 
to be placed on host language variables.

EXEC SQL fetch c into :cn, :cc END_EXEC
Repeated calls to fetch get successive tuples in the query result

 A variable called SQLSTATE in the SQL communication area 
(SQLCA) gets set to ‘02000’ to indicate no more data is available

 The close statement causes the database system to delete the 
temporary relation that holds the result of the query.

EXEC SQL close c END_EXEC
Note: above details vary with language.  For example, the Java 

embedding defines Java iterators to step through result tuples.
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Updates Through CursorsUpdates Through Cursors

 Can update tuples fetched by cursor by declaring that the cursor is for 
update

         declare c cursor for
       select *
       from account
       where branch_name = ‘Perryridge’
    for update

 To update tuple at the current location of cursor c
         update account

    set balance = balance + 100
    where current of c
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Dynamic SQLDynamic SQL

 Allows programs to construct and submit SQL queries at run time.
 Example of the use of dynamic SQL from within a C program.

char *  sqlprog = “update account 
                             set balance = balance * 1.05

              where account_number = ?”
EXEC SQL prepare dynprog  from :sqlprog;
char account [10] = “A-101”;
EXEC SQL execute dynprog using :account;

 The dynamic SQL program contains a ?, which is a place holder for a 
value that is provided when the SQL program is executed.
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JDBCJDBC

 JDBC is a Java API for communicating with database systems 
supporting SQL

 JDBC supports a variety of features for querying and updating data, and 
for retrieving query results

 JDBC also supports metadata retrieval, such as querying about relations 
present in the database and the names and types of relation attributes

 Model for communicating with the database:
 Open a connection
 Create a “statement” object
 Execute queries using the Statement object to send queries and 

fetch results
 Exception mechanism to handle errors
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JDBC CodeJDBC Code

public static void JDBCexample(String dbid, String userid, String passwd) 
      { 

     try { 
  Class.forName ("oracle.jdbc.driver.OracleDriver"); 
  Connection conn = 

DriverManager.getConnection(   "jdbc:oracle:thin:@aura.bell-
labs.com:2000:bankdb", userid, passwd); 

        Statement stmt = conn.createStatement(); 
            … Do Actual Work ….
        stmt.close();
        conn.close();
   }
   catch (SQLException sqle) { 
        System.out.println("SQLException : " + sqle);
   }

     }
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JDBC Code (Cont.)JDBC Code (Cont.)

 Update to database
try { 
     stmt.executeUpdate(  "insert into account values

                                        ('A-9732', 'Perryridge', 1200)"); 
} catch (SQLException sqle) { 
     System.out.println("Could not insert tuple. " + sqle);
}

 Execute query and fetch and print results 
ResultSet rset = stmt.executeQuery( "select branch_name, 

avg(balance)  
                                                        from account 
                                                        group by branch_name");

while (rset.next()) {
System.out.println(

           rset.getString("branch_name") + "  " + rset.getFloat(2));

}
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JDBC Code Details       JDBC Code Details       

 Getting result fields:
 rs.getString(“branchname”) and rs.getString(1) equivalent if 

branchname is the first argument of select result.
 Dealing with Null values

int a = rs.getInt(“a”);
if (rs.wasNull()) Systems.out.println(“Got null value”);
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Procedural Extensions and Stored ProceduresProcedural Extensions and Stored Procedures

 SQL provides a module language 
 Permits definition of procedures in SQL, with if-then-else statements, 

for and while loops, etc.
 more in Chapter 9

 Stored Procedures
 Can store procedures in the database 
 then execute them using the call statement
 permit external applications to operate on the database without 

knowing about internal details
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Functions and ProceduresFunctions and Procedures

 SQL:1999 supports functions and procedures
 Functions/procedures can be written in SQL itself, or in an external 

programming language
 Functions are particularly useful with specialized data types such as 

images and geometric objects
 Example: functions to check if polygons overlap, or to compare 

images for similarity
 Some database systems support table-valued functions, which 

can return a relation as a result
 SQL:1999 also supports a rich set of imperative constructs, including

 Loops, if-then-else, assignment
 Many databases have proprietary procedural extensions to SQL that 

differ from SQL:1999
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SQL FunctionsSQL Functions

 Define a function that, given the name of a customer, returns the count 
of the number of accounts owned by the customer.

             create function account_count (customer_name varchar(20))
       returns integer
      begin
           declare a_count integer;
           select count (* ) into a_count
           from depositor
           where depositor.customer_name = customer_name
           return a_count;
       end

 Find the name and address of each customer that has more than one 
account.

select customer_name, customer_street, customer_city
from customer
where account_count (customer_name ) > 1
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Table FunctionsTable Functions
 SQL:2003 added functions that return a relation as a result
 Example: Return all accounts owned by a given customer

create function accounts_of (customer_name char(20)
returns table ( account_number char(10),

branch_name char(15)
balance numeric(12,2))

return table
(select account_number, branch_name, balance
 from account A
 where exists (
     select *
     from depositor D
     where D.customer_name = accounts_of.customer_name
               and D.account_number = A.account_number ))
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Table Functions (cont’d)Table Functions (cont’d)

 Usage
select *
from table (accounts_of (‘Smith’))
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SQL ProceduresSQL Procedures

 The author_count function could instead be written as procedure:
create procedure account_count_proc (in title varchar(20), 
                                                             out a_count integer)
begin
  select count(author) into a_count
  from depositor
  where depositor.customer_name = account_count_proc.customer_name

     end
 Procedures can be invoked either from an SQL procedure or from 

embedded SQL, using the call statement.
declare a_count integer;
call account_count_proc( ‘Smith’, a_count);

Procedures and functions can be invoked also from dynamic SQL
 SQL:1999 allows more than one function/procedure of the same name 

(called name overloading), as long as the number of 
arguments differ, or at least the types of the arguments differ
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Procedural ConstructsProcedural Constructs

 Compound statement: begin … end, 
 May contain multiple SQL statements between begin and end.
 Local variables can be declared within a compound statements

 While and repeat statements:
declare n integer default 0;
while n < 10 do

    set n = n + 1
end while

repeat
           set n = n  – 1

until n = 0
end repeat
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Procedural Constructs (Cont.)Procedural Constructs (Cont.)

 For loop
 Permits iteration over all results of a query
 Example: find total of all balances at the Perryridge 

branch

   declare n  integer default 0;
   for r  as
         select balance from account
          where branch_name = ‘Perryridge’
    do

       set n = n + r.balance
    end for
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Procedural Constructs (cont.)Procedural Constructs (cont.)

 Conditional statements  (if-then-else)
E.g. To find sum of balances for each of three categories of accounts 
(with balance <1000, >=1000 and <5000, >= 5000)

if r.balance < 1000
     then set l = l + r.balance
elseif r.balance < 5000
     then set m = m + r.balance
else set h = h + r.balance
end if 

 SQL:1999 also supports a case statement similar to C case statement
 Signaling of exception conditions, and declaring handlers for exceptions

declare out_of_stock condition
declare exit handler for out_of_stock
begin
…

         ..  signal out-of-stock
end

 The handler here is exit -- causes enclosing begin..end to be exited
 Other actions possible on exception
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External Language Functions/ProceduresExternal Language Functions/Procedures

 SQL:1999 permits the use of functions and procedures written in other 
languages such as C or C++ 

 Declaring external language procedures and functions

create procedure account_count_proc(in customer_name varchar(20),
                                                            out count integer)
language C
external name ’ /usr/avi/bin/account_count_proc’

create function account_count(customer_name varchar(20))
returns integer
language C
external name ‘/usr/avi/bin/author_count’
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External Language Routines (Cont.)External Language Routines (Cont.)

 Benefits of external language functions/procedures:  
 more efficient for many operations, and more expressive power

 Drawbacks
 Code to implement function may need to be loaded into database 

system and executed in the database system’s address space
 risk of accidental corruption of database structures
 security risk, allowing users access to unauthorized data

 There are alternatives, which give good security at the cost of 
potentially worse performance

 Direct execution in the database system’s space is used when 
efficiency is more important than security
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Security with External Language RoutinesSecurity with External Language Routines

 To deal with security problems
 Use sandbox techniques

  that is use a safe language like Java, which cannot be used to 
access/damage other parts of the database code

 Or, run external language functions/procedures in a separate 
process, with no access to the database process’ memory
 Parameters and results communicated via inter-process 

communication
 Both have performance overheads
 Many database systems support both above approaches as well as 

direct executing in database system address space
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Recursion in SQLRecursion in SQL

 SQL:1999 permits recursive view definition
 Example: find all employee-manager pairs, where the employee 

reports to the manager directly or indirectly (that is manager’s 
manager, manager’s manager’s manager, etc.)

    with recursive empl (employee_name, manager_name ) as (
               select employee_name, manager_name 
               from    manager
        union
               select manager.employee_name, empl.manager_name
               from   manager, empl
               where manager.manager_name = empl.employe_name)
    select * 
    from    empl
This example view, empl, is called the transitive closure of the 
manager relation
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The Power of RecursionThe Power of Recursion

 Recursive views make it possible to write queries, such as transitive 
closure queries, that cannot be written without recursion or iteration.
 Intuition:  Without recursion, a non-recursive non-iterative program 

can perform only a fixed number of joins of manager with itself
 This can give only a fixed number of levels of managers
 Given a program we can construct a database with a greater 

number of levels of managers on which the program will not work
 Computing transitive closure

 The next slide shows a manager relation
 Each step of the iterative process constructs an extended version of 

empl from its recursive definition.  
 The final result is called the fixed point  of the recursive view 

definition.
 Recursive views are required to be monotonic.  That is, if we add tuples 

to manger the view contains all of the tuples it contained before, plus 
possibly more
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Example of Fixed-Point ComputationExample of Fixed-Point Computation
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Advanced SQL Features**Advanced SQL Features**
 Create a table with the same schema as an existing table:

create table temp_account like account
 SQL:2003 allows subqueries to occur anywhere a value is required 

provided the subquery returns only one value.  This applies to updates as 
well

 SQL:2003 allows subqueries in the from clause to access attributes of 
other relations in the from clause using the lateral construct:

select C.customer_name, num_accounts
from customer C, 
      lateral (select count(*) 
      from account A     

    where A.customer_name = C.customer_name )
as this_customer (num_accounts )
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Advanced SQL Features (cont’d)Advanced SQL Features (cont’d)

 Merge construct allows batch processing of updates.
 Example: relation funds_received (account_number, amount ) has 

batch of deposits to be added to the proper account in the account  
relation
merge into account as A

using (select *
                from funds_received as F )
         on (A.account_number = F.account_number )
         when matched then
               update set balance = balance + F.amount
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