
Advanced SQLAdvanced SQL

2

Advanced SQLAdvanced SQL

 SQL Data Types and Schemas
 Integrity Constraints
 Authorization
 Embedded SQL
 Dynamic SQL
 Functions and Procedural Constructs**
 Recursive Queries**
 Advanced SQL Features**

3

Built-in Data Types in SQL Built-in Data Types in SQL

 date: Dates, containing a (4 digit) year, month and date
 Example: date ‘2005-7-27’

 time: Time of day, in hours, minutes and seconds.
 Example: time ‘09:00:30’ time ‘09:00:30.75’

 timestamp: date plus time of day
 Example: timestamp ‘2005-7-27 09:00:30.75’

 interval: period of time
 Example: interval ‘1’ day
 Subtracting a date/time/timestamp value from another gives an

interval value
 Interval values can be added to date/time/timestamp values

4

Build-in Data Types in SQL (Cont.)Build-in Data Types in SQL (Cont.)

 Can extract values of individual fields from date/time/timestamp
 Example: extract (year from r.starttime)

 Can cast string types to date/time/timestamp
 Example: cast <string-valued-expression> as date
 Example: cast <string-valued-expression> as time

5

User-Defined TypesUser-Defined Types

 create type construct in SQL creates user-defined type

create type Dollars as numeric (12,2) final

 create domain construct in SQL-92 creates user-defined domain
types

create domain person_name char(20) not null

 Types and domains are similar. Domains can have constraints, such
as not null, specified on them.

6

Domain ConstraintsDomain Constraints

 Domain constraints are the most elementary form of integrity
constraint. They test values inserted in the database, and test queries
to ensure that the comparisons make sense.

 New domains can be created from existing data types
 Example: create domain Dollars numeric(12, 2)

 create domain Pounds numeric(12,2)
 We cannot assign or compare a value of type Dollars to a value of

type Pounds.
 However, we can convert type as below

 (cast r.A as Pounds)
(Should also multiply by the dollar-to-pound conversion-rate)

7

Large-Object TypesLarge-Object Types

 Large objects (photos, videos, CAD files, etc.) are stored as a large
object:
 blob: binary large object -- object is a large collection of

uninterpreted binary data (whose interpretation is left to an
application outside of the database system)

 clob: character large object -- object is a large collection of
character data

 When a query returns a large object, a pointer is returned rather
than the large object itself.

 Bfile
 Nclob

8

Integrity ConstraintsIntegrity Constraints

 Integrity constraints guard against accidental damage to the
database, by ensuring that authorized changes to the
database do not result in a loss of data consistency.
 A checking account must have a balance greater than

$10,000.00
 A salary of a bank employee must be at least $4.00 an

hour
 A customer must have a (non-null) phone number

9

 Constraints on a Single Relation Constraints on a Single Relation

 not null
 primary key
 unique
 check (P), where P is a predicate

10

Not Null Constraint Not Null Constraint

 Declare branch_name for branch is not null
 branch_name char(15) not null

 Declare the domain Dollars to be not null

 create domain Dollars numeric(12,2) not null

11

The Unique ConstraintThe Unique Constraint

 unique (A1, A2, …, Am)

 The unique specification states that the attributes
 A1, A2, … Am

form a candidate key.
 Candidate keys are permitted to be null (in contrast to primary keys).

12

The check clauseThe check clause

 check (P), where P is a predicate

Example: Declare branch_name as the primary key for
branch and ensure that the values of assets are non-
negative.

create table branch
 (branch_name char(15),
 branch_city char(30),
 assets integer,
 primary key (branch_name),
 check (assets >= 0))

13

The check clause (Cont.)The check clause (Cont.)

 The check clause in SQL-92 permits domains to be restricted:
 Use check clause to ensure that an hourly_wage domain allows

only values greater than a specified value.
create domain hourly_wage numeric(5,2)

constraint value_test check(value > = 4.00)
 The domain has a constraint that ensures that the hourly_wage is

greater than 4.00
 The clause constraint value_test is optional; useful to indicate

which constraint an update violated.

14

Referential IntegrityReferential Integrity

 Ensures that a value that appears in one relation for a given set of
attributes also appears for a certain set of attributes in another relation.
 Example: If “Perryridge” is a branch name appearing in one of the

tuples in the account relation, then there exists a tuple in the branch
relation for branch “Perryridge”.

 Primary and candidate keys and foreign keys can be specified as part of
the SQL create table statement:
 The primary key clause lists attributes that comprise the primary key.
 The unique key clause lists attributes that comprise a candidate key.
 The foreign key clause lists the attributes that comprise the foreign

key and the name of the relation referenced by the foreign key. By
default, a foreign key references the primary key attributes of the
referenced table.

15

Referential Integrity in SQL – ExampleReferential Integrity in SQL – Example

create table customer
(customer_name char(20),
customer_street char(30),
customer_city char(30),
primary key (customer_name))

create table branch
(branch_name char(15),
branch_city char(30),
assets numeric(12,2),
primary key (branch_name))

16

Referential Integrity in SQL – Example (Cont.)Referential Integrity in SQL – Example (Cont.)

create table account
(account_number char(10),
branch_name char(15),
balance integer,
primary key (account_number),
foreign key (branch_name) references branch)

create table depositor
(customer_name char(20),
account_number char(10),
primary key (customer_name, account_number),
foreign key (account_number) references account,
foreign key (customer_name) references customer)

17

Referential Integrity in SQL – Example (Cont.)Referential Integrity in SQL – Example (Cont.)

When a referential Integrity constraint is violated, the normal
procedure is to reject the action that cause the violation

Exception
delete, update

create table depositor
(customer_name char(20),
account_number char(10),
primary key (customer_name, account_number),
foreign key (account_number) references account on
delete cascade,
foreign key (customer_name) references customer) on
delete cascade

18

Referential Integrity in SQL – Example (Cont.)Referential Integrity in SQL – Example (Cont.)

NULL values complicates the Referential Integrity constraint

Attributes of foreign keys are allowed to be null unless
otherwise declared

IC can be added by using
 alter table table-name add constraint constraint-name

19

AssertionsAssertions

 An assertion is a predicate expressing a condition that we wish the
database always to satisfy.

 An assertion in SQL takes the form
create assertion <assertion-name> check <predicate>

 When an assertion is made, the system tests it for validity, and tests it
again on every update that may violate the assertion
 This testing may introduce a significant amount of overhead;

hence assertions should be used with great care.
 Asserting

 for all X, P(X)
is achieved in a round-about fashion using
 not exists X such that not P(X)

20

Assertion ExampleAssertion Example

 Every loan has at least one borrower who maintains an account with a
minimum balance or $1000.00

 create assertion balance_constraint check
 (not exists (
 select *

 from loan
 where not exists (

 select *
 from borrower, depositor, account
 where loan.loan_number = borrower.loan_number

 and borrower.customer_name = depositor.customer_name
 and depositor.account_number = account.account_number
 and account.balance >= 1000)))

21

Assertion ExampleAssertion Example

 The sum of all loan amounts for each branch must be less than the
sum of all account balances at the branch.

 create assertion sum_constraint check
 (not exists (select *
 from branch

 where (select sum(amount)
 from loan

 where loan.branch_name =
 branch.branch_name)

 >= (select sum (amount)
 from account

 where loan.branch_name =
 branch.branch_name)))

22

AuthorizationAuthorization

Forms of authorization on parts of the database:

 Read - allows reading, but not modification of data.
 Insert - allows insertion of new data, but not modification of existing data.
 Update - allows modification, but not deletion of data.
 Delete - allows deletion of data.

Forms of authorization to modify the database schema
 Index - allows creation and deletion of indices.
 Resources - allows creation of new relations.
 Alteration - allows addition or deletion of attributes in a relation.
 Drop - allows deletion of relations.

23

Authorization Specification in SQLAuthorization Specification in SQL

 The grant statement is used to confer authorization
grant <privilege list>
on <relation name or view name> to <user list>

 <user list> is:
 a user-id
 public, which allows all valid users the privilege granted
 A role

 Granting a privilege on a view does not imply granting any privileges
on the underlying relations.

 The grantor of the privilege must already hold the privilege on the
specified item (or be the database administrator).

24

Privileges in SQLPrivileges in SQL

 select: allows read access to relation,or the ability to query using
the view
 Example: grant users U1, U2, and U3 select authorization on

the branch relation:
grant select on branch to U1, U2, U3

 insert: the ability to insert tuples
 update: the ability to update using the SQL update statement
 delete: the ability to delete tuples.
 all privileges: used as a short form for all the allowable privileges
 more in Chapter 8

25

Revoking Authorization in SQLRevoking Authorization in SQL

 The revoke statement is used to revoke authorization.
revoke <privilege list>
on <relation name or view name> from <user list>

 Example:
revoke select on branch from U1, U2, U3

 <privilege-list> may be all to revoke all privileges the revokee may
hold.

 If <revokee-list> includes public, all users lose the privilege except
those granted it explicitly.

 If the same privilege was granted twice to the same user by different
grantees, the user may retain the privilege after the revocation.

 All privileges that depend on the privilege being revoked are also
revoked.

26

Embedded SQLEmbedded SQL

 The SQL standard defines embeddings of SQL in a variety of
programming languages such as C, Java, and Cobol.

 A language to which SQL queries are embedded is referred to as a host
language, and the SQL structures permitted in the host language
comprise embedded SQL.

 The basic form of these languages follows that of the System R
embedding of SQL into PL/I.

 EXEC SQL statement is used to identify embedded SQL request to the
preprocessor

EXEC SQL <embedded SQL statement > END_EXEC
Note: this varies by language (for example, the Java embedding uses

 # SQL { …. };)

27

Example QueryExample Query

 Specify the query in SQL and declare a cursor for it
 EXEC SQL

 declare c cursor for
 select depositor.customer_name, customer_city
 from depositor, customer, account
 where depositor.customer_name = customer.customer_name
 and depositor account_number = account.account_number

and account.balance > :amount
 END_EXEC

 From within a host language, find the names and cities of
customers with more than the variable amount dollars in some
account.

28

Embedded SQL (Cont.)Embedded SQL (Cont.)

 The open statement causes the query to be evaluated
EXEC SQL open c END_EXEC

 The fetch statement causes the values of one tuple in the query result
to be placed on host language variables.

EXEC SQL fetch c into :cn, :cc END_EXEC
Repeated calls to fetch get successive tuples in the query result

 A variable called SQLSTATE in the SQL communication area
(SQLCA) gets set to ‘02000’ to indicate no more data is available

 The close statement causes the database system to delete the
temporary relation that holds the result of the query.

EXEC SQL close c END_EXEC
Note: above details vary with language. For example, the Java

embedding defines Java iterators to step through result tuples.

29

Updates Through CursorsUpdates Through Cursors

 Can update tuples fetched by cursor by declaring that the cursor is for
update

 declare c cursor for
 select *
 from account
 where branch_name = ‘Perryridge’
 for update

 To update tuple at the current location of cursor c
 update account

 set balance = balance + 100
 where current of c

30

Dynamic SQLDynamic SQL

 Allows programs to construct and submit SQL queries at run time.
 Example of the use of dynamic SQL from within a C program.

char * sqlprog = “update account
 set balance = balance * 1.05

 where account_number = ?”
EXEC SQL prepare dynprog from :sqlprog;
char account [10] = “A-101”;
EXEC SQL execute dynprog using :account;

 The dynamic SQL program contains a ?, which is a place holder for a
value that is provided when the SQL program is executed.

31

JDBCJDBC

 JDBC is a Java API for communicating with database systems
supporting SQL

 JDBC supports a variety of features for querying and updating data, and
for retrieving query results

 JDBC also supports metadata retrieval, such as querying about relations
present in the database and the names and types of relation attributes

 Model for communicating with the database:
 Open a connection
 Create a “statement” object
 Execute queries using the Statement object to send queries and

fetch results
 Exception mechanism to handle errors

32

JDBC CodeJDBC Code

public static void JDBCexample(String dbid, String userid, String passwd)
 {

 try {
 Class.forName ("oracle.jdbc.driver.OracleDriver");
 Connection conn =

DriverManager.getConnection("jdbc:oracle:thin:@aura.bell-
labs.com:2000:bankdb", userid, passwd);

 Statement stmt = conn.createStatement();
 … Do Actual Work ….
 stmt.close();
 conn.close();
 }
 catch (SQLException sqle) {
 System.out.println("SQLException : " + sqle);
 }

 }

33

JDBC Code (Cont.)JDBC Code (Cont.)

 Update to database
try {
 stmt.executeUpdate("insert into account values

 ('A-9732', 'Perryridge', 1200)");
} catch (SQLException sqle) {
 System.out.println("Could not insert tuple. " + sqle);
}

 Execute query and fetch and print results
ResultSet rset = stmt.executeQuery("select branch_name,

avg(balance)
 from account
 group by branch_name");

while (rset.next()) {
System.out.println(

 rset.getString("branch_name") + " " + rset.getFloat(2));

}

34

JDBC Code Details JDBC Code Details

 Getting result fields:
 rs.getString(“branchname”) and rs.getString(1) equivalent if

branchname is the first argument of select result.
 Dealing with Null values

int a = rs.getInt(“a”);
if (rs.wasNull()) Systems.out.println(“Got null value”);

35

Procedural Extensions and Stored ProceduresProcedural Extensions and Stored Procedures

 SQL provides a module language
 Permits definition of procedures in SQL, with if-then-else statements,

for and while loops, etc.
 more in Chapter 9

 Stored Procedures
 Can store procedures in the database
 then execute them using the call statement
 permit external applications to operate on the database without

knowing about internal details

36

Functions and ProceduresFunctions and Procedures

 SQL:1999 supports functions and procedures
 Functions/procedures can be written in SQL itself, or in an external

programming language
 Functions are particularly useful with specialized data types such as

images and geometric objects
 Example: functions to check if polygons overlap, or to compare

images for similarity
 Some database systems support table-valued functions, which

can return a relation as a result
 SQL:1999 also supports a rich set of imperative constructs, including

 Loops, if-then-else, assignment
 Many databases have proprietary procedural extensions to SQL that

differ from SQL:1999

37

SQL FunctionsSQL Functions

 Define a function that, given the name of a customer, returns the count
of the number of accounts owned by the customer.

 create function account_count (customer_name varchar(20))
 returns integer
 begin
 declare a_count integer;
 select count (*) into a_count
 from depositor
 where depositor.customer_name = customer_name
 return a_count;
 end

 Find the name and address of each customer that has more than one
account.

select customer_name, customer_street, customer_city
from customer
where account_count (customer_name) > 1

38

Table FunctionsTable Functions
 SQL:2003 added functions that return a relation as a result
 Example: Return all accounts owned by a given customer

create function accounts_of (customer_name char(20)
returns table (account_number char(10),

branch_name char(15)
balance numeric(12,2))

return table
(select account_number, branch_name, balance
 from account A
 where exists (
 select *
 from depositor D
 where D.customer_name = accounts_of.customer_name
 and D.account_number = A.account_number))

39

Table Functions (cont’d)Table Functions (cont’d)

 Usage
select *
from table (accounts_of (‘Smith’))

40

SQL ProceduresSQL Procedures

 The author_count function could instead be written as procedure:
create procedure account_count_proc (in title varchar(20),
 out a_count integer)
begin
 select count(author) into a_count
 from depositor
 where depositor.customer_name = account_count_proc.customer_name

 end
 Procedures can be invoked either from an SQL procedure or from

embedded SQL, using the call statement.
declare a_count integer;
call account_count_proc(‘Smith’, a_count);

Procedures and functions can be invoked also from dynamic SQL
 SQL:1999 allows more than one function/procedure of the same name

(called name overloading), as long as the number of
arguments differ, or at least the types of the arguments differ

41

Procedural ConstructsProcedural Constructs

 Compound statement: begin … end,
 May contain multiple SQL statements between begin and end.
 Local variables can be declared within a compound statements

 While and repeat statements:
declare n integer default 0;
while n < 10 do

 set n = n + 1
end while

repeat
 set n = n – 1

until n = 0
end repeat

42

Procedural Constructs (Cont.)Procedural Constructs (Cont.)

 For loop
 Permits iteration over all results of a query
 Example: find total of all balances at the Perryridge

branch

 declare n integer default 0;
 for r as
 select balance from account
 where branch_name = ‘Perryridge’
 do

 set n = n + r.balance
 end for

43

Procedural Constructs (cont.)Procedural Constructs (cont.)

 Conditional statements (if-then-else)
E.g. To find sum of balances for each of three categories of accounts
(with balance <1000, >=1000 and <5000, >= 5000)

if r.balance < 1000
 then set l = l + r.balance
elseif r.balance < 5000
 then set m = m + r.balance
else set h = h + r.balance
end if

 SQL:1999 also supports a case statement similar to C case statement
 Signaling of exception conditions, and declaring handlers for exceptions

declare out_of_stock condition
declare exit handler for out_of_stock
begin
…

 .. signal out-of-stock
end

 The handler here is exit -- causes enclosing begin..end to be exited
 Other actions possible on exception

44

External Language Functions/ProceduresExternal Language Functions/Procedures

 SQL:1999 permits the use of functions and procedures written in other
languages such as C or C++

 Declaring external language procedures and functions

create procedure account_count_proc(in customer_name varchar(20),
 out count integer)
language C
external name ’ /usr/avi/bin/account_count_proc’

create function account_count(customer_name varchar(20))
returns integer
language C
external name ‘/usr/avi/bin/author_count’

45

External Language Routines (Cont.)External Language Routines (Cont.)

 Benefits of external language functions/procedures:
 more efficient for many operations, and more expressive power

 Drawbacks
 Code to implement function may need to be loaded into database

system and executed in the database system’s address space
 risk of accidental corruption of database structures
 security risk, allowing users access to unauthorized data

 There are alternatives, which give good security at the cost of
potentially worse performance

 Direct execution in the database system’s space is used when
efficiency is more important than security

46

Security with External Language RoutinesSecurity with External Language Routines

 To deal with security problems
 Use sandbox techniques

 that is use a safe language like Java, which cannot be used to
access/damage other parts of the database code

 Or, run external language functions/procedures in a separate
process, with no access to the database process’ memory
 Parameters and results communicated via inter-process

communication
 Both have performance overheads
 Many database systems support both above approaches as well as

direct executing in database system address space

47

Recursion in SQLRecursion in SQL

 SQL:1999 permits recursive view definition
 Example: find all employee-manager pairs, where the employee

reports to the manager directly or indirectly (that is manager’s
manager, manager’s manager’s manager, etc.)

 with recursive empl (employee_name, manager_name) as (
 select employee_name, manager_name
 from manager
 union
 select manager.employee_name, empl.manager_name
 from manager, empl
 where manager.manager_name = empl.employe_name)
 select *
 from empl
This example view, empl, is called the transitive closure of the
manager relation

48

The Power of RecursionThe Power of Recursion

 Recursive views make it possible to write queries, such as transitive
closure queries, that cannot be written without recursion or iteration.
 Intuition: Without recursion, a non-recursive non-iterative program

can perform only a fixed number of joins of manager with itself
 This can give only a fixed number of levels of managers
 Given a program we can construct a database with a greater

number of levels of managers on which the program will not work
 Computing transitive closure

 The next slide shows a manager relation
 Each step of the iterative process constructs an extended version of

empl from its recursive definition.
 The final result is called the fixed point of the recursive view

definition.
 Recursive views are required to be monotonic. That is, if we add tuples

to manger the view contains all of the tuples it contained before, plus
possibly more

49

Example of Fixed-Point ComputationExample of Fixed-Point Computation

50

Advanced SQL Features**Advanced SQL Features**
 Create a table with the same schema as an existing table:

create table temp_account like account
 SQL:2003 allows subqueries to occur anywhere a value is required

provided the subquery returns only one value. This applies to updates as
well

 SQL:2003 allows subqueries in the from clause to access attributes of
other relations in the from clause using the lateral construct:

select C.customer_name, num_accounts
from customer C,
 lateral (select count(*)
 from account A

 where A.customer_name = C.customer_name)
as this_customer (num_accounts)

51

Advanced SQL Features (cont’d)Advanced SQL Features (cont’d)

 Merge construct allows batch processing of updates.
 Example: relation funds_received (account_number, amount) has

batch of deposits to be added to the proper account in the account
relation
merge into account as A

using (select *
 from funds_received as F)
 on (A.account_number = F.account_number)
 when matched then
 update set balance = balance + F.amount

	Advanced SQL
	Slide 2
	Built-in Data Types in SQL
	Build-in Data Types in SQL (Cont.)
	User-Defined Types
	Domain Constraints
	Large-Object Types
	Integrity Constraints
	Constraints on a Single Relation
	Not Null Constraint
	The Unique Constraint
	The check clause
	The check clause (Cont.)
	Referential Integrity
	Referential Integrity in SQL – Example
	Referential Integrity in SQL – Example (Cont.)
	Slide 17
	Slide 18
	Assertions
	Assertion Example
	Slide 21
	Authorization
	Authorization Specification in SQL
	Privileges in SQL
	Revoking Authorization in SQL
	Embedded SQL
	Example Query
	Embedded SQL (Cont.)
	Updates Through Cursors
	Dynamic SQL
	JDBC
	JDBC Code
	JDBC Code (Cont.)
	JDBC Code Details
	Procedural Extensions and Stored Procedures
	Functions and Procedures
	SQL Functions
	Table Functions
	Table Functions (cont’d)
	SQL Procedures
	Procedural Constructs
	Procedural Constructs (Cont.)
	Procedural Constructs (cont.)
	External Language Functions/Procedures
	External Language Routines (Cont.)
	Security with External Language Routines
	Recursion in SQL
	The Power of Recursion
	Example of Fixed-Point Computation
	Advanced SQL Features**
	Advanced SQL Features (cont’d)

