
09/20/202
4

1

 Subject: Database Management
Systems(DBMS)

By: Mr.Loukik S.Salvi

09/20/2024 2

Topics to be covered:
• Databases
• DBMS
• DBMS-Defination
• DBMS-overview

09/20/2024 3

Databases
• The database is a collection of inter-related data which is

used to retrieve, insert and delete the data efficiently.
• It is also used to organize the data in the form of a table,

schema, views, and reports, etc.
• For example: Aadhar-card Database
• Using the database, we can easily retrieve, insert, and

delete the information.

09/20/2024 4

Data-Information-Knowledge
Cycle

• Data: in context are individual facts that have meaning and can be
readily understood. They are the raw facts wrapped with
meaning. Datum in context is a single fact wrapped with meaning.

• Information is a set of data in context with relevance to one or more
people at a point in time or for a period of time. Information is more
than data in context—it must have relevance and a time frame.

• Knowledge is cognizance, cognition, the fact or condition of knowing
something with familiarity gained through experience or
association.Knowledge is information that has been retained with an
understanding about the significance of that information. Knowledge
includes something gained by experience, study, familiarity,
association, awareness, and/or comprehension.

09/20/2024 5

Abstract examples:
1. Selecting a car

09/20/2024 6

Database management system
• Database management system is a software which is used to manage the

database. For example: MySQL, Oracle, etc are a very popular commercial
database which is used in different applications.

• DBMS provides an interface to perform various operations like database
creation, storing data in it, updating data, creating a table in the database
and a lot more.

• It provides protection and security to the database. In the case of multiple
users, it also maintains data consistency.

https://www.javatpoint.com/mysql-tutorial
https://www.javatpoint.com/oracle-tutorial

09/20/2024 7

DBMS allows users the following tasks:

• Data Definition: It is used for creation, modification, and removal
of definition that defines the organization of data in the database.

• Data Updation: It is used for the insertion, modification, and
deletion of the actual data in the database.

• Data Retrieval: It is used to retrieve the data from the database
which can be used by applications for various purposes.

• User Administration: It is used for registering and monitoring
users, maintain data integrity, enforcing data security, dealing
with concurrency control, monitoring performance and recovering
information corrupted by unexpected failure.

09/20/2024 8

Characteristics of DBMS

• It uses a digital repository established on a server to store and
manage the information.

• It can provide a clear and logical view of the process that
manipulates data.

• DBMS contains automatic backup and recovery procedures.
• It contains ACID properties which maintain data in a healthy state

in case of failure.
• It can reduce the complex relationship between data.
• It is used to provide security of data.
• It can view the database from different viewpoints according to the

requirements of the user.

09/20/2024 9

Applications of dbms---in a
nutshell

09/20/2024 10

Advantages of DBMS
• Controls database redundancy: It can control data redundancy because it stores all

the data in one single database file and that recorded data is placed in the database.
• Data sharing: In DBMS, the authorized users of an organization can share the data

among multiple users.
• Easily Maintenance: It can be easily maintainable due to the centralized nature of

the database system.
• Reduce time: It reduces development time and maintenance need.
• Backup: It provides backup and recovery subsystems which create automatic backup

of data from hardware and software failures and restores the data if required.
• Multiple user interface: It provides different types of user interfaces like graphical

user interfaces, application program interfaces

https://www.javatpoint.com/hardware
https://www.javatpoint.com/software

09/20/2024 11

09/20/2024 12

Disadvantage of DBMS
• 1.Increased costs:Database systems require sophisticated hardware and software and highly skilled

personnel.The cost of maintaining the hardware, software, and personnel required to operate and manage a
database system can be substantial. Training, licensing, and regulation compliance costs are often
overlooked when database systems are implemented.
• 2. Management complexity:Database systems interface with many different technologies and have a

significant impact on a company’s resources and culture.The changes introduced by the adoption of a
database system must be properly managed to ensure that they help advance the company’s objectives.
Given the fact that database systems hold crucial company data that are accessed from multiple sources,
security issues must be assessed constantly.
• 3. Maintaining currency:To maximize the efficiency of the database system, you must keep your system

current.Therefore, you must perform frequent updates and apply the latest patches and security measures
to all components.Because database technology advances rapidly, personnel training costs tend to be
significant. Vendor dependence.Given the heavy investment in technology and personnel training,
companies might be reluctant to change database vendors.
• 4. Frequent upgrade/replacement cycles:DBMS vendors frequently upgrade their products by adding

new functionality. Such new features often come bundled in new upgrade versions of the software.Some of
these versions require hardware upgrades. Not only do the upgrades themselves cost money, but it also
costs money to train database users and administrators to properly use and manage the new features.

09/20/2024 13

ACID properties
• A transaction is a collection of instructions.
• To maintain the integrity of a database, all transactions must obey ACID

properties.
• ACID is an acronym for atomicity, consistency, isolation, and durability.
1. Atomicity
• A transaction is an atomic unit; hence, all the instructions within a

transaction will successfully execute, or none of them will execute.
• Consider a transaction transfers 20 dollars from Alice’s bank account to

Bob’s bank account. If any of the instructions fail, the entire transaction
should abort and rollback.

09/20/2024 14

2. Consistency
• A database is initially in a consistent state, and it should remain

consistent after every transaction. Suppose that the transaction in the
previous example fails after Write(A_b) and the transaction is not
rolled back; then, the database will be inconsistent as the sum of Alice
and Bob’s money, after the transaction, will not be equal to the amount
of money they had before the transaction.

3. Isolation
• If the multiple transactions are running concurrently, they should not

be affected by each other; i.e., the result should be the same as the
result obtained if the transactions were running sequentially.

09/20/2024 15

4. Durability
• Changes that have been committed to the database should

remain even in the case of software and hardware failure.
For instance, if Bob’s account contains $120, this
information should not disappear upon hardware or
software failure.

09/20/2024 16

Levels of abstractions in DBMS
Data Abstraction
• Data Abstraction refers to the process of hiding irrelevant details from the user.

So, what is the meaning of irrelevant details
• Example: If we want to access any mail from our Gmail then we don't know

where that data is physically stored i.e is the data present in India or USA or
what data model has been used to store that data? We are not concerned about
these things. We are only concerned with our email. So, information like these
i.e. location of data and data models are irrelevant to us and in data abstraction,
we do this only. Apart from the location of data and data models, there are other
factors that we don't care of. We hide the unnecessary data from the user and
this process of hiding unwanted data is called Data Abstraction.

09/20/2024 17

• There are mainly three levels of data abstraction and we divide it into
three levels in order to achieve Data Independence. Data Independence
means users and data should not directly interact with each other. The
user should be at a different level and the data should be present at
some other level. By doing so, Data Independence can be achieved.

• Three levels of data abstraction:
• View Level
• Conceptual Level
• Physical Level

09/20/2024 18

09/20/2024 19

View Level or External Schema

• This level tells the application about how the data should be shown to the user.
• Example:

• If we have a login-id and password in a university system, then as a student, we can view
our marks, attendance, fee structure, etc. But the faculty of the university will have a
different view.

• He will have options like salary, edit marks of a student, enter attendance of the students,
etc. So, both the student and the faculty have a different view.

• By doing so, the security of the system also increases. In this example, the student can't
edit his marks but the faculty who is authorized to edit the marks can edit the student's
marks. Similarly, the dean of the college or university will have some more authorization
and accordingly, he will has his view. So, different users will have a different view according
to the authorization they have.

09/20/2024 20

Conceptual Level or Logical Level

• This level tells how the data is actually stored and structured. We have different
data models by which we can store the data(You can read more about the
different types of data model from here).

• Example:
• Let us take an example where we use the relational model for storing the data. We have to

store the data of a student, the columns in the student table will be student_name, age,
mail_id, roll_no etc.

• We have to define all these at this level while we are creating the database. Though the data
is stored in the database but the structure of the tables like the student table, teacher table,
books table, etc are defined here in the conceptual level or logical level.

• Also, how the tables are related to each other are defined here. Overall, we can say that we
are creating a blueprint of the data at the conceptual level.

https://afteracademy.com/blog/what-is-data-model-in-dbms-and-what-are-its-types

09/20/2024 21

Physical Level or Internal Schema

• As the name suggests, the Physical level tells us that where the data is
actually stored i.e. it tells the actual location of the data that is being
stored by the user.

• The Database Administrators(DBA) decide that which data should be
kept at which particular disk drive, how the data has to be fragmented,
where it has to be stored etc. They decide if the data has to be
centralized or distributed.

• Though we see the data in the form of tables at view level the data here
is actually stored in the form of files only. It totally depends on the DBA,
how he/she manages the database at the physical level.

09/20/2024 22

DBMS Architecture 2-Level, 3-Level

Two tier architecture:
• Two tier architecture is similar to a basic client-server model. The application at the

client end directly communicates with the database at the server side. API’s like
ODBC,JDBC are used for this interaction.

• The server side is responsible for providing query processing and transaction management
functionalities. On the client side, the user interfaces and application programs are run.

• The application on the client side establishes a connection with the server side in order to
communicate with the DBMS.

• An advantage of this type is that maintenance and understanding is easier, compatible with
existing systems. However this model gives poor performance when there are a large
number of users.

09/20/2024 23

Three Tier architecture:
• In this type, there is another layer between the client and the

server. The client does not directly communicate with the server.
• Instead, it interacts with an application server which further

communicates with the database system and then the query
processing and transaction management takes place.

• This intermediate layer acts as a medium for exchange of partially
processed data between server and client. This type of
architecture is used in case of large web applications.

09/20/2024 24

Advantages:
• Enhanced scalability due to distributed deployment of application servers.

Now,individual connections need not be made between client and server.
• Data Integrity is maintained. Since there is a middle layer between client and

server, data corruption can be avoided/removed.
• Security is improved. This type of model prevents direct interaction of the client

with the server thereby reducing access to unauthorized data.
Disadvantages:
• Increased complexity of implementation and communication. It becomes difficult

for this sort of interaction to take place due to presence of middle layers.

09/20/2024 25

09/20/2024 26

DBMS Architecture

• A Database Management system is not always directly available for users and
applications to access and store data in it. A Database Management system can
be centralised(all the data stored at one location), decentralised(multiple copies
of database at different locations) or hierarchical, depending upon its architecture.

• 1-tier DBMS architecture also exist, this is when the database is directly available
to the user for using it to store data. Generally such a setup is used for local
application development, where programmers communicate directly with the
database for quick response.
• Database Architecture is logically of two types:

• 2-tier DBMS architecture
• 3-tier DBMS architecture

09/20/2024 27

 2-tier DBMS Architecture

• 2-tier DBMS architecture includes an Application layer between the user and the
DBMS, which is responsible to communicate the user's request to the database
management system and then send the response from the DBMS to the user.

• An application interface known as ODBC(Open Database Connectivity) provides an API
that allow client side program to call the DBMS. Most DBMS vendors provide ODBC
drivers for their DBMS.

• Such an architecture provides the DBMS extra security as it is not exposed to the End
User directly. Also, security can be improved by adding security and authentication
checks in the Application layer too.

09/20/2024 28

09/20/2024 29

3-tier DBMS Architecture
• 3-tier DBMS architecture is the most commonly used architecture for web

applications.
• It is an extension of the 2-tier architecture. In the 2-tier architecture, we have an

application layer which can be accessed programatically to perform various
operations on the DBMS. The application generally understands the Database
Access Language and processes end users requests to the DBMS.

• In 3-tier architecture, an additional Presentation or GUI Layer is added, which
provides a graphical user interface for the End user to interact with the DBMS.

• For the end user, the GUI layer is the Database System, and the end user has no
idea about the application layer and the DBMS system.

09/20/2024 30

09/20/2024 31

Centralized Database Design:

• For a small organization and limited scope of operations, the database may be
small in terms of data. Therefore, the database design may be relatively simple and
can be easily done by one group of designer or even a single person. This is called
centralized design of database.

• The designer can study the system processes, identify the constraints, and create
conceptual schema, whereas the users can verify it to ensure that the database
meets their needs and processing requirements.

09/20/2024 32

Decentralized Database Design:
• When the database study reveals that the resulting database is for the ‘whole organizations and

that it has large number of entities and complex relations on which very complex operations are
performed, then the database design may be undertaken by division of work. Here it may be
suitable to study and design conceptual schema for each department or function for which the
database is to be designed.

• The database design project may be thought of as one large project subdivided into
smaller modules, and each module is designed by a group of people.

• Each module is in itself a system and must meet the system requirements as a whole. These
modules when integrated to form a single database must meet the processing requirements. This
is called decentralized design approach. This approach is also suitable when the database design
is spread across several operational sites, and each element is a subset of the entire data set.

09/20/2024 33

Characteristics of Database Approach
1. Manages Information
• A database always takes care of its information because information is always helpful for

whatever work we do. It manages all the information that is required to us. Managing
information by using a database, we become more deliberated user of our data.

2. Easy Operation Implementation
• All the operations like insert, delete, update, search etc. are carried out in a flexible and

easy way. Database makes it very simple to implement these operations. A user with
little knowledge can perform these operations. This characteristic of database makes it
more powerful.

3. Multiple Views of Database
• Basically, a view is a subset of the database. A view is defined and devoted for a

particular user of the system. Different users of the system may have different views of
the same system.

09/20/2024 34

4. Data For Specific Purpose
• A database is designed for data of specific purpose. For example, a database of student

management system is designed to maintain the record of student’s marks, fees and
attendance etc. This data has a specific purpose of maintaining student record.

5. It has Users of Specific Interest
• A database always has some indented group of users and applications in which these user

groups are interested.
• For example, in a library system, there are three users, official administration of the

college, the librarian, and the students.
6. Represent Some Aspects of Real World Applications
• A database represents some features of real world applications. Any change in the real

world is reflected in the database. If we have some changes in our real applications like
railway reservation system then it will be reflected in database too.

09/20/2024 35

7. Self Describing nature
• A database is of self describing nature; it always describes and narrates itself. It contains

the description of the whole data structure, the constraints and the variables.
• It makes it different from traditional file management system in which definition was not

the part of application program. These definitions are used by the users and DBMS
software when needed.

8. Logical Relationship Between Records and Data
• A database gives a logical relationship between its records and data. So a user can access

various records depending upon the logical conditions by a single query from the
database.

9. Shelter Between Program and Data
• In traditional file management system, if any user makes changes in the structure of a file

then all the programs accessed by that file needed to be changed. The structure of data
files is defined by the application programs.

09/20/2024 36

Client-Server Model
• The Client-server model is a distributed application

structure that partitions task or workload between the
providers of a resource or service, called servers, and
service requesters called clients.

• In the client-server architecture, when the client
computer sends a request for data to the server through
the internet, the server accepts the requested process and
deliver the data packets requested back to the client.

• Clients do not share any of their resources. Examples of
Client-Server Model are Email, World Wide Web, etc.

09/20/2024 37

How the Client-Server Model
works ?

• Client: When we mention the word Client, it mean to talk of a person or
an organization using a particular service. Similarly in the digital world
a Client is a computer (Host) i.e. capable of receiving information or
using a particular service from the service providers (Servers).

• Servers: Similarly, when we mention the word Servers, It mean a
person or medium that serves something. Similarly in this digital world
a Server is a remote computer which provides information (data) or
access to particular services.

• So, its basically the Client requesting something and
the Server serving it as long as its present in the database

09/20/2024 38

09/20/2024 39

Few steps to follow to interacts with the
servers a client.

• User enters the URL(Uniform Resource Locator) of the website or file. The
Browser then requests the DNS(DOMAIN NAME SYSTEM) Server.

• DNS Server lookup for the address of the WEB Server.
• DNS Server responds with the IP address of the WEB Server.
• Browser sends over an HTTP/HTTPS request to WEB Server’s IP (provided

by DNS server).
• Server sends over the necessary files of the website.
• Browser then renders the files and the website is displayed. This rendering is done

with the help of DOM (Document Object Model) interpreter, CSS interpreter
and JS Engine collectively known as the JIT or (Just in Time) Compilers.

09/20/2024 40

Advantages of Client-Server model:

• Centralized system with all data in a single place.
• Cost efficient requires less maintenance cost and Data

recovery is possible.
• The capacity of the Client and Servers can be changed

separately.

09/20/2024 41

Disadvantages of Client-Server model:

• Clients are prone to viruses, Trojans and worms if present in the
Server or uploaded into the Server.

• Server are prone to Denial of Service (DOS) attacks.
• Data packets may be spoofed or modified during transmission.
• Phishing or capturing login credentials or other useful information of

the user are common and MITM(Man in the Middle) attacks are
common.

09/20/2024 42

Object based model
• In object based data models, the focus is on how data is represented. The data is divided

into multiple entities each of which have some defining characteristics. Moreover, these
data entities are connected with each other through some relationships.

• So, in object based data models the entities are based on real world models, and how the
data is in real life. There is not as much concern over what the data is as compared to how
it is visualised and connected.

• Some examples of object based data models are
• Entity Relationship Data Model
• Object Oriented Data Model
• Semantic Data Model
• Functional Data Model

09/20/2024 43

Record based model
• The actual relationship between any two entities can be

observed in record based data models.
• There are 3 types of record based data models defined so

far- Hierarchical, Network and Relational data models.
Most widely used record based data model is relational
data model. Other two are not widely used.

09/20/2024 44

Hierarchical Data Models
• Imagine we have to create a database for a company. What are the entities involved in it? Company, its

department, its supplier, its employees, different projects of the company etc are the different entities we need
to take care of.

• If we observe each of the entity they have parent –child relationship. We can design them like we do
ancestral hierarchy. In our case, Company is the parent and rests of them are its children. Department has
employees and project as its children and so on. This type of data modelling is called hierarchical data model.

• In this data model, the entities are represented in a hierarchical fashion. Here we identify a parent entity, and
its child entity. Again we drill down to identify next level of child entity and so on. This model can be
imagined as folders inside a folder!

09/20/2024 45

09/20/2024 46

• Advantages
• It helps to address the issues of flat file data storage. In

flat files, data will be scattered and there will not be any
proper structuring of the data. This model groups the
related data into tables and defines the relationship
between the tables, which is not addressed in flat files.

09/20/2024 47

Disadvantages
• Redundancy: – When data is stored in a flat file, there might be repetition of same data multiple times and any

changes required for the data will need to change in all the places in the flat file. Missing to update at any one
place will cause incorrect data. This kind redundancy is solved by hierarchical model to some extent. Since
records are grouped under related table, it solves the flat file redundancy issue. But look at the many to many
relationship examples given above. In such case, we have to store same project information for more than one
department. This is duplication of data and hence a redundancy. So, this model does not reduce the redundancy
issue to a significant level.

• As we have seen above, it fails to handle many to many relationships efficiently. It results in redundancy and
confusion. It can handle only parent-child kind of relationship.

• If we need to fetch any data in this model, we have to start from the root of the model and traverse through its
child till we get the result. In order to perform the traversing, either we should know well in advance the layout
of model or we should be very good programmer. Hence fetching through this model becomes bit difficult.

• Imagine company has got some new project details, but it did not assign it to any department yet. In this case,
we cannot store project information in the PROJECT table, till company assigns it to some department. That
means, in order to enter any child information, its parent information should be already known / entered.

09/20/2024 48

Network Based Model
• The network model is the extension of the hierarchical structure

because it allows many-to-many relationships to be managed in a
tree-like structure that allows multiple parents.

• There are two fundamental concepts of a network model −
• Records contain fields which need hierarchical organization.
• Sets are used to define one-to-many relationships between records that

contain one owner, many members.

• A record may act as an owner in any number of sets, and a
member in any number of sets.

09/20/2024 49

• A set is designed with the help of circular linked lists where one
record type, the owner of the set also called as a parent, appears once
in each circle, and a second record type, also known as the
subordinate or child, may appear multiple times in each circle.

• A hierarchy is established between any two record types where one
type (A) is the owner of another type (B). At the same time, another
set can be developed where the latter set (B) is the owner of the
former set (A). In this model, ownership is defined by the direction,
thus all the sets comprise a general directed graph. Access to records
is developed by the indexing structure of circular linked lists.

09/20/2024 50

• The network model has the following major features −
• It can represent redundancy in data more efficiently than that in the

hierarchical model.
• There can be more than one path from a previous node to successor node/s.
• The operations of the network model are maintained by indexing structure

of linked list (circular) where a program maintains a current position and
navigates from one record to another by following the relationships in
which the record participates.

• Records can also be located by supplying key values.

09/20/2024 51

09/20/2024 52

• Advantages
• fast data access.
• It also allows users to create queries that are more complex than those they created

using a hierarchical database. So, a variety of queries can be run over this model.
• Disadvantages
• A user must be very familiar with the structure of the database to work through the set

structures.
• Updating inside this database is a tedious task. One cannot change a set structure

without affecting the application programs that use this structure to navigate through
the data. If you change a set structure, you must also modify all references made from
within the application program to that structure.

09/20/2024 53

What is Relational Model?

• RELATIONAL MODEL (RM) represents the database as
a collection of relations. A relation is nothing but a table
of values. Every row in the table represents a collection of
related data values. These rows in the table denote a real-
world entity or relationship.

• The table name and column names are helpful to interpret
the meaning of values in each row. The data are
represented as a set of relations. In the relational model,
data are stored as tables. However, the physical storage of
the data is independent of the way the data are logically
organized.

09/20/2024 54

Relational Model Concepts
1.Attribute: Each column in a Table. Attributes are the properties which
define a relation. e.g., Student_Rollno, NAME,etc.
2.Tables – In the Relational model the, relations are saved in the table
format. It is stored along with its entities. A table has two properties rows
and columns. Rows represent records and columns represent attributes.
3.Tuple – It is nothing but a single row of a table, which contains a single
record.
4.Relation Schema: A relation schema represents the name of the relation
with its attributes.
5.Degree: The total number of attributes which in the relation is called the
degree of the relation.

09/20/2024 55

6.Cardinality: Total number of rows present in the Table.
7.Column: The column represents the set of values for a specific
attribute.
8. Relation instance – Relation instance is a finite set of tuples in the
RDBMS system. Relation instances never have duplicate tuples.
9. Relation key - Every row has one, two or multiple attributes, which is
called relation key.
10. Attribute domain – Every attribute has some pre-defined value and
scope which is known as attribute domain

09/20/2024 56

09/20/2024 57

Informal Definitions
• Informally, a relation looks like a table of values.

• A relation typically contains a set of rows.

• The data elements in each row represent certain facts that correspond to a real-world entity
or relationship
• In the formal model, rows are called tuples

• Each column has a column header that gives an indication of the meaning of the data items
in that column
• In the formal model, the column header is called an attribute name (or just attribute)

09/20/2024 58

Example of a Relation

09/20/2024 59

Informal Definitions
• Key of a Relation:

• Each row has a value of a data item (or set of items) that uniquely identifies that row in
the table

• Called the key

• In the STUDENT table, SSN is the key

• Sometimes row-ids or sequential numbers are assigned as keys to identify the rows in a
table

Called artificial key or surrogate key

09/20/2024 60

Formal Definitions - Schema
• The Schema (or description) of a Relation:
• Denoted by R(A1, A2,An)

• R is the name of the relation

• The attributes of the relation are A1, A2, ..., An

Example:

CUSTOMER (Cust-id, Cust-name, Address, Phone#)
• CUSTOMER is the relation name

• Defined over the four attributes: Cust-id, Cust-name, Address, Phone#

• Each attribute has a domain or a set of valid values.
• For example, the domain of Cust-id is 6 digit numbers.

09/20/2024 61

Formal Definitions - Tuple
• A tuple is an ordered set of values (enclosed in angled brackets ‘< … >’)

• Each value is derived from an appropriate domain.

• A row in the CUSTOMER relation is a 4-tuple and would consist of four values, for
example:

• <632895, "John Smith", "101 Main St. Atlanta, GA 30332", "(404) 894-2000">

• This is called a 4-tuple as it has 4 values

• A tuple (row) in the CUSTOMER relation.

• A relation is a set of such tuples (rows)

09/20/2024 62

Formal Definitions - Domain
• A domain has a logical definition:

 Example: “USA_phone_numbers” are the set of 10 digit phone numbers valid in the U.S.
• A domain also has a data-type or a format defined for it.

 The USA_phone_numbers may have a format: (ddd)ddd-dddd where each d is a decimal digit.
 Dates have various formats such as year, month, date formatted as yyyy-mm-dd, or as dd

mm,yyyy etc.
• The attribute name designates the role played by a domain in a relation:

 Used to interpret the meaning of the data elements corresponding to that attribute
 Example: The domain Date may be used to define two attributes named “Invoice-date” and

“Payment-date” with different meanings

09/20/2024 63

Formal Definitions - State
• The relation state is a subset of the Cartesian product of the domains of its attributes

• each domain contains the set of all possible values the attribute can take.
• Example: attribute Cust-name is defined over the domain of character strings of

maximum length 25
• dom(Cust-name) is varchar(25)

• The role these strings play in the CUSTOMER relation is that of the name of a customer.

09/20/2024 64

Formal Definitions - Summary
• Formally,

• Given R(A1, A2,, An)

• r(R)  dom (A1) X dom (A2) XX dom(An)

• R(A1, A2, …, An) is the schema of the relation

• R is the name of the relation

• A1, A2, …, An are the attributes of the relation

09/20/2024 65

Formal Definitions - Example
• Let R(A1, A2) be a relation schema:

• Let dom(A1) = {0,1}

• Let dom(A2) = {a,b,c}

• Then: dom(A1) X dom(A2) is all possible combinations:

{<0,a> , <0,b> , <0,c>, <1,a>, <1,b>, <1,c> }

• The relation state r(R)  dom(A1) X dom(A2)

• For example: r(R) could be {<0,a> , <0,b> , <1,c> }

• this is one possible state (or “population” or “extension”) r of the relation R, defined over A1 and A2.

• It has three 2-tuples: <0,a> , <0,b> , <1,c>

09/20/2024 66

Definition Summary
Informal Terms Formal Terms

Table Relation
Column Header Attribute

All possible Column
Values

Domain

Row Tuple
Table Definition Schema of a Relation
Populated Table State of the Relation

09/20/2024 67

Example – A relation STUDENT

09/20/2024 68

Characteristics Of Relations
Ordering of tuples in a relation r(R):
The tuples are not considered to be ordered, even though they appear to be in the

tabular form.
Ordering of attributes in a relation schema R (and of values within each tuple):
We will consider the attributes in R(A1, A2, ..., An) and the values in t=<v1, v2, ...,

vn> to be ordered .(However, a more general alternative definition of relation does
not require this ordering).

09/20/2024 69

Same state as previous Figure (but
with different order of tuples)

09/20/2024 70

Characteristics Of Relations

• Values in a tuple:
• All values are considered atomic (indivisible).

• Each value in a tuple must be from the domain of the attribute for that column
• If tuple t = <v1, v2, …, vn> is a tuple (row) in the relation state r of R(A1, A2, …, An)

• Then each vi must be a value from dom(Ai)

• A special null value is used to represent values that are unknown or inapplicable to
certain tuples.

09/20/2024 71

Characteristics Of Relations

Notation:
We refer to component values of a tuple t by:
t[Ai] or t.Ai
This is the value vi of attribute Ai for tuple t
Similarly, t[Au, Av, ..., Aw] refers to the subtuple of t containing the

values of attributes Au, Av, ..., Aw, respectively in t

09/20/2024 72

Relational Integrity Constraints

• Constraints are conditions that must hold on all valid relation states.

• There are three main types of constraints in the relational model:
• Key constraints

• Entity integrity constraints

• Referential integrity constraints

• Another implicit constraint is the domain constraint
• Every value in a tuple must be from the domain of its attribute (or it could be null, if

allowed for that attribute)

09/20/2024 73

Key Constraints
• Superkey of R:
• Is a set of attributes SK of R with the following condition:

• No two tuples in any valid relation state r(R) will have the same value for SK

• That is, for any distinct tuples t1 and t2 in r(R), t1[SK]  t2[SK]

• This condition must hold in any valid state r(R)

• Key of R:
• A "minimal" superkey

• That is, a key is a superkey K such that removal of any attribute from K results in a set of
attributes that is not a superkey (does not possess the superkey uniqueness property)

09/20/2024 74

Key Constraints (continued)
Example: Consider the CAR relation schema:

• CAR(State, Reg#, SerialNo, Make, Model, Year)

• CAR has two keys:

• Key1 = {State, Reg#}

• Key2 = {SerialNo}

• Both are also superkeys of CAR

• {SerialNo, Make} is a superkey but not a key.

• In general:

• Any key is a superkey (but not vice versa)

• Any set of attributes that includes a key is a superkey

• A minimal superkey is also a key

09/20/2024 75

Key Constraints (continued)
• If a relation has several candidate keys, one is chosen arbitrarily to be the primary key.
• The primary key attributes are underlined.

• Example: Consider the CAR relation schema:
• CAR(State, Reg#, SerialNo, Make, Model, Year)
• We chose SerialNo as the primary key

• The primary key value is used to uniquely identify each tuple in a relation
• Provides the tuple identity

• Also used to reference the tuple from another tuple
• General rule: Choose as primary key the smallest of the candidate keys (in terms of size)
• Not always applicable – choice is sometimes subjective

09/20/2024 76

CAR table with two candidate keys –
LicenseNumber chosen as Primary Key

09/20/2024 77

Relational Database Schema

• Relational Database Schema:
• A set S of relation schemas that belong to the same database.

• S is the name of the whole database schema

• S = {R1, R2, ..., Rn}

• R1, R2, …, Rn are the names of the individual relation schemas within the database S

• Following slide shows a COMPANY database schema with 6 relation
schemas

09/20/2024 78

COMPANY Database Schema

09/20/2024 79

Entity Integrity

• Entity Integrity:
• The primary key attributes PK of each relation schema R in S cannot have

null values in any tuple of r(R).
• This is because primary key values are used to identify the individual tuples.

• t[PK]  null for any tuple t in r(R)

• If PK has several attributes, null is not allowed in any of these attributes

• Note: Other attributes of R may be constrained to disallow null values,
even though they are not members of the primary key.

09/20/2024 80

Referential Integrity

• A constraint involving two relations
• The previous constraints involve a single relation.

• Used to specify a relationship among tuples in two
relations:
• The referencing relation and the referenced relation.

09/20/2024 81

Referential Integrity

• Tuples in the referencing relation R1 have attributes FK
(called foreign key attributes) that reference the primary
key attributes PK of the referenced relation R2.
• A tuple t1 in R1 is said to reference a tuple t2 in R2 if t1[FK] =

t2[PK].

• A referential integrity constraint can be displayed in a
relational database schema as a directed arc from R1.FK
to R2.

09/20/2024 82

Referential Integrity (or foreign key)
Constraint

• Statement of the constraint
• The value in the foreign key column (or columns) FK of the the

referencing relation R1 can be either:
• (1) a value of an existing primary key value of a corresponding

primary key PK in the referenced relation R2, or
• (2) a null.

• In case (2), the FK in R1 should not be a part of its own
primary key.

09/20/2024 83

Displaying a relational database
schema and its constraints

• Each relation schema can be displayed as a row of
attribute names

• The name of the relation is written above the attribute
names

• The primary key attribute (or attributes) will be
underlined

• A foreign key (referential integrity) constraints is
displayed as a directed arc (arrow) from the foreign key
attributes to the referenced table
• Can also point the the primary key of the referenced relation

for clarity
• Next slide shows the COMPANY relational schema

diagram

09/20/2024 84

Referential Integrity Constraints for COMPANY database

09/20/2024 85

Populated database state
• Each relation will have many tuples in its current relation state

• The relational database state is a union of all the individual relation states

• Whenever the database is changed, a new state arises

• Basic operations for changing the database:
• INSERT a new tuple in a relation

• DELETE an existing tuple from a relation

• MODIFY an attribute of an existing tuple

• Next slide shows an example state for the COMPANY database

09/20/2024 86

Populated database state for COMPANY

09/20/2024 87

Update Operations on Relations

• INSERT a tuple.
• DELETE a tuple.

• MODIFY a tuple.
• Integrity constraints should not be violated by the update operations.

• Several update operations may have to be grouped together.
• Updates may propagate to cause other updates automatically. This may be

necessary to maintain integrity constraints.

09/20/2024 88

Update Operations on Relations

• In case of integrity violation, several actions can be taken:
• Cancel the operation that causes the violation (RESTRICT or REJECT option)

• Perform the operation but inform the user of the violation

• Trigger additional updates so the violation is corrected (CASCADE option, SET
NULL option)

• Execute a user-specified error-correction routine

09/20/2024 89

Possible violations for each
operation

• INSERT may violate any of the constraints:

• Domain constraint:

• if one of the attribute values provided
for the new tuple is not of the
specified attribute domain

• Key constraint:

• if the value of a key attribute in the
new tuple already exists in another
tuple in the relation

• Referential integrity:

• if a foreign key value in the new tuple
references a primary key value that
does not exist in the referenced
relation

• Entity integrity:

• if the primary key value is null in the
new tuple

09/20/2024 90

Possible violations for each
operation

• DELETE may violate only referential integrity:
• If the primary key value of the tuple being deleted is referenced from other tuples in the

database
• Can be remedied by several actions: RESTRICT, CASCADE, SET NULL (see Chapter 8 for more

details)
• RESTRICT option: reject the deletion

• CASCADE option: propagate the new primary key value into the foreign keys of the referencing tuples

• SET NULL option: set the foreign keys of the referencing tuples to NULL

• One of the above options must be specified during database design for each foreign key
constraint

09/20/2024 91

Possible violations for each
operation

• UPDATE may violate domain constraint
and NOT NULL constraint on an attribute
being modified

• Any of the other constraints may also be
violated, depending on the attribute being
updated:

• Updating the primary key (PK):

• Similar to a DELETE followed by
an INSERT

• Need to specify similar options to
DELETE

• Updating a foreign key (FK):

• May violate referential integrity

• Updating an ordinary attribute (neither
PK nor FK):

• Can only violate domain
constraints

09/20/2024 92

Relational Integrity constraints

• Relational Integrity constraints is referred to conditions which must be
present for a valid relation. These integrity constraints are derived
from the rules in the mini-world that the database represents.

• There are many types of integrity constraints. Constraints on the
Relational database management system is mostly divided into three
main categories are:

• Domain constraints
• Key constraints
• Referential integrity constraints

09/20/2024 93

• In the above example, we have 2
relations, Customer and Billing.

• Tuple for CustomerID =1 is
referenced twice in the relation
Billing. So we know
CustomerName=Google has
billing amount $300

09/20/2024 94

Operations in Relational Model

• Four basic update operations performed on relational database model are
• Insert, update, delete and select.
• Insert is used to insert data into the relation
• Delete is used to delete tuples from the table.
• Modify allows you to change the values of some attributes in existing tuples.
• Select allows you to choose a specific range of data.
• Whenever one of these operations are applied, integrity constraints specified

on the relational database schema must never be violated.

09/20/2024 95

Insert Operation

• The insert operation gives values of the attribute for a
new tuple which should be inserted into a relation.

09/20/2024 96

Update Operation
• You can see that in the below-given relation table

CustomerName= 'Apple' is updated from Inactive to
Active.

09/20/2024 97

Delete Operation
• To specify deletion, a condition on the attributes of the relation selects the tuple

to be deleted.
• In the below-given example, CustomerName= "Apple" is deleted from the table.
• The Delete operation could violate referential integrity if the tuple which is

deleted is referenced by foreign keys from other tuples in the same database.

09/20/2024 98

• SQL Constraints are rules used to limit the type of data
that can go into a table, to maintain the accuracy and
integrity of the data inside table.

• Constraints can be divided into the following two types,
• Column level constraints: Limits only column data.
• Table level constraints: Limits whole table data.

09/20/2024 99

• Constraints are used to make sure that the integrity of data is maintained
in the database. Following are the most used constraints that can be
applied to a table.

• NOT NULL
• UNIQUE
• PRIMARY KEY
• FOREIGN KEY
• CHECK
• DEFAULT

09/20/2024 100

NOT NULL Constraint

• NOT NULL constraint restricts a column from having
a NULL value. Once NOT NULL constraint is applied to a
column, you cannot pass a null value to that column. It
enforces a column to contain a proper value.

• One important point to note about this constraint is that it
cannot be defined at table lev

09/20/2024 101

UNIQUE Constraint
• UNIQUE constraint ensures that a field or column will

only have unique values. A UNIQUE constraint field will
not have duplicate data. This constraint can be applied at
column level or table level.

09/20/2024 102

Primary Key Constraint
• Primary key constraint uniquely identifies each record in a

database. A Primary Key must contain unique value and it
must not contain null value. Usually Primary Key is used
to index the data inside the table.

09/20/2024 103

Foreign Key Constraint

• FOREIGN KEY is used to relate
two tables. FOREIGN KEY
constraint is also used to restrict
actions that would destroy links
between tables. To understand
FOREIGN KEY, let's see its use,
with help of the below tables:

09/20/2024 104

CHECK Constraint

• CHECK constraint is used to restrict the value of a
column between a range. It performs check on the values,
before storing them into the database. Its like condition
checking before saving data into a column.

09/20/2024 105

Behaviour of Foriegn Key Column on Delete

• There are two ways to maintain the integrity of data in
Child table, when a particular record is deleted in the
main table. When two tables are connected with Foriegn
key, and certain data in the main table is deleted, for
which a record exits in the child table, then we must have
some mechanism to save the integrity of data in the child
table

09/20/2024 106

• On Delete Cascade : This will remove the record from
child table, if that value of foriegn key is deleted from the
main table.

• On Delete Null : This will set all the values in that record
of child table as NULL, for which the value of foriegn key
is deleted from the main table.

• If we don't use any of the above, then we cannot delete
data from the main table for which data in child table
exists. We will get an error if we try to do so.

	Subject: Database Management Systems(DBMS)
	Topics to be covered:
	Databases
	Data-Information-Knowledge Cycle
	Slide 5
	Database management system
	DBMS allows users the following tasks:
	Characteristics of DBMS
	Applications of dbms---in a nutshell
	Advantages of DBMS
	Slide 11
	Disadvantage of DBMS
	ACID properties
	Slide 14
	Slide 15
	Levels of abstractions in DBMS
	Slide 17
	Slide 18
	View Level or External Schema
	Conceptual Level or Logical Level
	Physical Level or Internal Schema
	DBMS Architecture 2-Level, 3-Level
	Slide 23
	Slide 24
	Slide 25
	DBMS Architecture
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Centralized Database Design:
	Decentralized Database Design:
	Characteristics of Database Approach
	Slide 34
	Slide 35
	Client-Server Model
	How the Client-Server Model works ?
	Slide 38
	Few steps to follow to interacts with the servers a client.
	Advantages of Client-Server model:
	Disadvantages of Client-Server model:
	Object based model
	Record based model
	Hierarchical Data Models
	Slide 45
	Slide 46
	Slide 47
	Network Based Model
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	What is Relational Model?
	Relational Model Concepts
	Slide 55
	Slide 56
	Informal Definitions
	Example of a Relation
	Informal Definitions (2)
	Formal Definitions - Schema
	Formal Definitions - Tuple
	Formal Definitions - Domain
	Formal Definitions - State
	Formal Definitions - Summary
	Formal Definitions - Example
	Definition Summary
	Example – A relation STUDENT
	Characteristics Of Relations
	Same state as previous Figure (but with different order of tupl
	Characteristics Of Relations (2)
	Characteristics Of Relations (3)
	Relational Integrity Constraints
	Key Constraints
	Key Constraints (continued)
	Key Constraints (continued) (2)
	CAR table with two candidate keys – LicenseNumber chosen as Pri
	Relational Database Schema
	Slide 78
	Entity Integrity
	Referential Integrity
	Referential Integrity (2)
	Referential Integrity (or foreign key) Constraint
	Displaying a relational database schema and its constraints
	Slide 84
	Populated database state
	Slide 86
	Update Operations on Relations
	Update Operations on Relations (2)
	Possible violations for each operation
	Possible violations for each operation (2)
	Possible violations for each operation (3)
	Relational Integrity constraints
	Slide 93
	Operations in Relational Model
	Insert Operation
	Update Operation
	Delete Operation
	Slide 98
	Slide 99
	NOT NULL Constraint
	UNIQUE Constraint
	Primary Key Constraint
	Foreign Key Constraint
	CHECK Constraint
	Behaviour of Foriegn Key Column on Delete
	Slide 106

