SIR C R REDDY COLLEGE OF ENGINEERING

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING
Eluru-534007, Andhra Pradesh State, INDIA.
(Affiliated to INTUK, Kakinada - Approved by AICTE - Accredited by NAAC)

STUDY MATERIAL

DATABASE MANAGEMENT SYSTEMS

Il BTECH Il YEAR
[JNTU-K R19 REGULATION]

Prepared by

M. Ganesh Babu
Assistant Professor
Dept. CSE

R-19 Syllabusfor CSE. INTUK w. e. f. 2019-20

;’.-'"5'-':::_;_ JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA

K AKINADA —533003, Andhra Pradesh, I ndia

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING
L|T|P|C
3[]1]0

Il Year — 11 Semester

DATABASE MANAGEMENT SYSTEMS

Course Objectives:

e Tointroduce about database management systems

e Togiveagood formal foundation on therelational model of data and usage of Relational Algebra

e Tointroduce the concepts of basic SQL as a universal Database language

e Todemonstrate the principles behind systematic database design approaches by covering
conceptual design, logical design through normalization

e To provide an overview of physical design of a database system, by discussing Database indexing
techniques and storage techniques

Cour se Outcomes:
By the end of the course, the student will be ableto
o Describeardational database and object-oriented database
Create, maintain and manipulate a relational database using SQL
Describe ER modd and normalization for database design
Examineissues in data storage and query processing and can formulate appropriate solutions
Outline the role and issues in management of data such as efficiency, privacy, security, ethical
responsibility, and strategic advantage

UNIT |

Introduction: Database system, Characteristics (Database Vs File System), Database Users(Actors on
Scene, Workers behind the scene), Advantages of Database systems, Database applications. Brief
introduction of different Data Models; Concepts of Schema, Instance and data independence; Three tier
schema architecture for data independence; Database system structure, environment, Centralized and
Client Server architecture for the database.

UNIT 11

Relational Model: Introduction to relational model, concepts of domain, attribute, tuple, rdation,
importance of null values, constraints (Domain, Key constraints, integrity constraints) and their importance
BASIC SQL: Simple Database schema, data types, table definitions (create, alter), different DML
operations (insert, deete, update), basic SQL querying (select and project) using where clause, arithmetic
& logical operations, SQL functions(Date and Time, Numeric, String conversion).

UNIT Il

Entity Relationship Moddl: Introduction, Representation of entities, attributes, entity set, reationship,
relationship set, constraints, sub classes, super class, inheritance, specialization, generalization using ER
Diagrams. SQL: Creating tables with relationship, implementation of key and integrity constraints, nested
queries, sub queries, grouping, aggregation, ordering, implementation of different types of joins,
view(updatable and non-updatabl€), relational set operations.

UNIT IV

Schema Refinement (Normalization): Purpose of Normalization or schema refinement, concept of
functional dependency, normal forms based on functional dependency(INF, 2NF and 3 NF), concept of
surrogate key, Boyce-codd normal form(BCNF), Lossless join and dependency preserving decomposition,
Fourth normal form(4NF), Fifth Normal Form (5NF).

R-19 Syllabusfor CSE. INTUK w. e. f. 2019-20

47, JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA
(%] KAKINADA - 533003, Andhra Pradesh, I ndia

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

UNIT V

Transaction Concept: Transaction State, Implementation of Atomicity and Durability, Concurrent
Executions, Serializability, Recoverability, Implementation of Isolation, Testing for Serializability, Failure
Classification, Storage, Recovery and Atomicity, Recovery algorithm.

Indexing Techniques: B+ Trees: Search, Insert, Delete algorithms, File Organization and Indexing,
Cluster Indexes, Primary and Secondary Indexes , Index data Structures, Hash Based Indexing: Tree base
Indexing ,Comparison of File Organizations, Indexes and Performance Tuning

Text Books:
1) Database Management Systems, 3/e, Raghurama Krishnan, Johannes Gehrke, TMH
2) Database System Concepts,5/¢e, Silberschatz, Korth, TMH

Refer ence Books:

1) Introduction to Database Systems, 8/e C J Date, PEA.

2) Database Management System, 6/e Ramez Elmasri, Shamkant B. Navathe, PEA

3) Database Principles Fundamentals of Design Implementation and Management, Corlos Coronel,
Steven Morris, Peter Robb, Cengage L earning.

e-Resources:

1) https://nptel.ac.in/courses/106/105/106105175/
2) https://www.geeksforgeeks.org/introduction-to-nosgl/

UNIT -1
INTRODUCTION TO DBMS

Databaseis a collection of related data and data is a collection of facts and figures that can be
processed to produce information.

Mostly data represents recordabl e facts. Data aids in producing information, which is based on
facts. For example, if we have data about marks obtained by all students, we can then conclude
about toppers and average marks.

A database management system stores datain such away that it becomes easier to retrieve,
manipulate, and produce information.

CHARACTERISTICSOEDBMS

Traditionally, data was organized in file formats. DBM S was a new concept then, and all the
research was done to make it overcome the deficiencies in traditional style of data management.
A modern DBMS has the following characteristics —

e Real-world entity — A modern DBMS is more realistic and uses real-world entitiesto
design its architecture. It uses the behavior and attributes too. For example, a school
database may use students as an entity and their age as an attribute.

o Relation-based tables — DBMSallows entities and rel ations among them to form tables.
A user can understand the architecture of adatabase just by looking at the table names.

o Isolation of data and application — A database system is entirely different than its data.
A database is an active entity, whereas data is said to be passive, on which the database
works and organizes. DBMS also stores metadata, which is data about data, to ease its
OWN Process.

e Lessredundancy — DBMSfollows the rules of normalization, which splitsarelation
when any of its attributesisthaving redundancy in values. Normalization isa
mathematically rich and scientific process that reduces data redundancy.

o Consistency — Consistency is a state where every relation in a database remains
consistent. There exist methods and techniques, which can detect attempt of leaving
database in inconsistent state. A DBMS can provide greater consistency as compared to
earlier forms of data storing applications like file-processing systems.

e Quey Language — DBMS is equipped with query language, which makes it more
efficient to retrieve and manipulate data. A user can apply as many and as different
filtering options as required to retrieve a set of data. Traditionally it was not possible
where file-processing system was used.

e ACID Properties— DBMS follows the concepts of Atomicity, Consistency, | solation,
and Durability (normally shortened as ACID). These concepts are applied on
transactions, which manipulate datain a database. ACID properties help the database stay
healthy in multi-transactional environments and in case of failure.

e Multiuser and Concurrent Access — DBMS supports multi-user environment and
allows them to access and manipulate datain parallel. Though there are restrictions on

transactions when users attempt to handle the same dataitem, but users are always
unaware of them.

Multiple views — DBMS offers multiple views for different users. A user who is in the
Sales department will have a different view of database than a person working in the
Production department. This feature enables the usersto have a concentrate view of the
database according to their requirements.

Security — Features like multiple views offer security to some extent where users are
unable to access data of other users and departments. DBMS offers methods to impose
constraints while entering data into the database and retrieving the same at alater stage.
DBMS offers many different levels of security features, which enables multiple users to
have different views with different features. For example, a user in the Sales department
cannot see the data that belongs to the Purchase department. Additionally, it can also be
managed how much data of the Sales department should be displayed to the user. Since a
DBMSisnot saved on the disk as traditional file systems, it isvery hard for miscreants to
break the code.

DATA BASE USERS

A typical DBMS has users with different rights and permissions who use'it for different
purposes. Some users retrieve data and some back it up. The users of a DBMS can be broadly
categorized as follows —

Administrators

End Users Designers

\,

Administrator s— Administrators maintain the DBMS and are responsible for
administrating the database. They are responsible to look after its usage and by whom it
should be used. They create access profiles for users and apply limitations to maintain
isolation and force security. Administrators also look after DBM S resources like system
license, required tools, and other software and hardware related maintenance.
Designers — Designers are the group of people who actually work on the designing part
of the database. They keep a close watch on what data should be kept and in what format.
They identify and design the whole set of entities, relations, constraints, and views.

End Users— End users are those who actually reap the benefits of havinga DBMS. End
users can range from simple viewers who pay attention to the logs or market rates to
sophisticated users such as business analysts.

DBMSARCHITECTURE

The design of aDBMS depends on its architecture. It can be centralized or decentralized or
hierarchical. The architecture of a DBMS can be seen as either single tier or multi-tier. An n-tier
architecture divides the whole system into related but independent n modules, which can be
independently modified, atered, changed, or replaced.

In 1-tier architecture, the DBM S isthe only entity where the user directly sits on the DBM S and
uses it. Any changes done here will directly be done on the DBMS itself. It does not provide
handy tools for end-users. Database designers and programmers normally prefer to'use single-
tier architecture.

If the architecture of DBMSis 2-tier, then it must have an application through which the DBM S
can be accessed. Programmers use 2-tier architecture where they access the DBMS by means of
an application. Here the application tier is entirely independent of the database in terms of
operation, design, and programming.

3-tier Architecture

A 3-tier architecture separates its tiers from each other based on the complexity of the users and
how they use the data present in the database. It is the most widely used architecture to design a
DBMS.

Praesasntation Tier

Application Tiaer

Cratabase Tier

o Database (Data) Tier — At this tier, the database resides along with its query processing
languages. We a'so have the relations that define the data and their constraints at this
level.

o Application (Middle) Tier — At this tier reside the application server and the programs
that access the database. For a user, this application tier presents an abstracted view of the
database. End-users are unaware of any existence of the database beyond the application.
At the other end, the database tier is not aware of any other user beyond the application
tier. Hence, the application layer sitsin the middle and acts as a mediator between the
end-user and the database.

e User (Presentation) Tier — End-users operate on thistier and they know nothing about
any existence of the database beyond thislayer. At thislayer, multiple views of the
database can be provided by the application. All views are generated by applications that
reside in the application tier.

Multiple-tier database architecture is highly modifiable, as almost all its components are
independent and can be changed independently.

DATA MODELS

Data models define how the logical structure of a database is modeled. Data Models are
fundamental entitiesto introduce abstraction inaDBMS. Data models define how datais
connected to each other and how they are processed and stored inside the system.

The very first data model could be flat data-models, where all the data used are to be kept in the

same plane. Earlier data models were not so scientific, hence they were prone to introduce lots of
duplication and update anomalies.

Entity-Relationship Model

Entity-Relationship (ER) Model is based on the notion of real-world entities and rel ationships
among them. While formulating real-world scenario into the database model, the ER Model
creates entity set, relationship set, general attributes and constraints.

ER Model is best used for the conceptual design of a database.

ER Model isbased on —

e Entitiesand their attributes.
e Relationships among entities.

These concepts areexplained below.

attribute attribute . attribute atiribute

-

N/ N/

Entity

. relationship —— Entity

e Entity — An entity in an ER Model is a real-world entity having properties called
attributes. Every attributeis defined by its set of values called domain. For example, in
aschool database, a student is considered as an entity. Student has various attributes like
name, age, class, etc.

o Reélationship — The logical association among entities is called relationship.

Rel ationships are mapped with entities in various ways. Mapping cardinalities define the
number of association between two entities.

Mapping cardinalities —

oneto one
one to many
many to one
many to many

Relational M odel

The most popular data model in DBM S isthe Relational Model. It is more scientific a model
than others. Thismodel is based on first-order predicate logic and defines atable asan'n-ary
relation.

attributes column
& B0 EHame BAge EClass SRestian
B

1103 Mirga i} B

table (ralation)

The main highlights of this model are —

Datais stored.in tables called relations.

¢ Rdations can be normalized.

e Innormalized relations, values saved are atomic val ues.

« Eachrow inareation contains a unique value.

¢ 1 Each column in arelation contains values from a same domain.
Database Schema

A database schema is the skeleton structure that represents the logical view of the entire
database. It defines how the data is organized and how the relations among them are associated.
It formulates all the constraints that are to be applied on the data.

A database schema defines its entities and the rel ationship among them. It contains a descriptive
detail of the database, which can be depicted by means of schema diagrams. It’s the database

designers who design the schema to help programmers understand the database and make it

useful.

View 2

I

Wiew 1

o

View 3

|

Student
Stu_ID

Logical Schema

Proj_1D

Physical Schema

A database schema can be divided broadly into two categories —
o Physical Database Schema — This schema pertains tothe actual storage of data and its

form of storage likefiles, indices, etc. It defines how the datawill be storedina

secondary storage.

L ogical Database Schema — This schema defines all the logical constraints that need to

be applied on the data stored. It defines tables, views, and integrity constraints.

Database | nstance

It isimportant that we distinguish these two terms individually. Database schema s the skeleton
of database. It is designed when the database doesn't exist at all. Once the database is
operational, it is very difficult to make any changesto it. A database schema does not contain
any data or information.

A databaseinstance is a state of operational database with data at any given time. It contains a
snapshot of the database: Database instances tend to change with time. A DBMS ensures that its
every instance (state) isin avalid state, by diligently following all the validations, constraints,
and conditions that the database designers have imposed.

DBMS -Data Independence

If a database system is not multi-layered, then it becomes difficult to make any changesin the
database system. Database systems are designed in multi-layers as we learnt earlier.

Data I ndependence

A database system normally contains a lot of data in addition to users’ data. For example, it
stores data about data, known as metadata, to locate and retrieve data easily. It israther difficult
to modify or update a set of metadata once it is stored in the database. But asa DBM S expands,
it needs to change over time to satisfy the requirements of the users. If the entire datais
dependent, it would become a tedious and highly complex job.

Logical Data Independence

Logical Schema

Physical Schema

Physical Data Independence

Metadata itself follows alayered architecture, so that when we change data at one layer, it does
not affect the data at another level. This data isindependent but mapped to each other.

L ogical Data | ndependence

Logical datais dataabout database, that is, it stores information about how data is managed
inside. For example, atable (relation) stored in the database and al its constraints, applied on
that relation.

Logical dataindependence isakind of mechanism, which liberalizesitself from actual data
stored onthe disk. If we do some changes on table format, it should not change the dataresiding
on the disk:

Physical Data Independence

All the schemas are logical, and the actual datais stored in bit format on the disk. Physical data
independence is the power to change the physical data without impacting the schema or logical
data.

For example, in case we want to change or upgrade the storage system itself — suppose we want
to replace hard-disks with SSD — it should not have any impact on the logical data or schemas.

Advantages of DBMS

The database management system has a number of advantages as compared to traditional computer
file-based processing approach. The DBA must keep in mind these benefits or capabilities during
databases and monitoring the DBMS.

The Main advantages of DBMS are described below.

e Controlling Data Redundancy

In non-database systems each application program has its own private files. In this case, the duplicated
copies of the same data is created in many places. In DBMS, all data of an organization is integrated into
a single database file. The data is recorded in only one place in the database'and it is not duplicated.

e Sharing of Data

In DBMS, data can be shared by authorized users of the organization. The database administrator
manages the data and gives rights to users to access the data. Many users can be authorized to access
the same piece of information simultaneously. The remote users can also share same data. Similarly, the
data of same database can be shared between different application programs.

e Data Consistency

By controlling the data redundancy, the data consistency is obtained. If a data item appears only once,
any update to its value has to be performed only once’and the updated value is immediately available to
all users. If the DBMS has controlled redundancy, the database system enforces consistency.

e Integration of Data

In Database management system, data in database is stored in tables. A single database contains
multiple tables.and relationships can be created between tables (or associated data entities). This makes
easy to retrieve and update data.

o Integration Constraints

Integrity constraints or consistency rules can be applied to database so that the correct data can be
entered.into database. The constraints may be applied to data item within a single record or the may be
applied to relationships between records.

e Data Security

Form is very important object of DBMS. You can create forms very easily and quickly in DBMS. Once a
form is created, it can be used many times and it can be modified very easily. The created forms are also

saved along with database and behave like a software component. A form provides very easy way (user-
friendly) to enter data into database, edit data and display data from database. The non-technical users
can also perform various operations on database through forms without going into technical details of a
fatabase.

e Report Writers

Most of the DBMSs provide the report writer tools used to create reports. The users can create very
easily and quickly. Once a report is created, it can be used may times and it can be modified'very easily.
The created reports are also saved along with database and behave like a software component:

e Control Over Concurrency

In a computer file-based system, if two users are allowed to access data simultaneously, it'is possible
that they will interfere with each other. For example, if both users attempt to perform update operation
on the same record, then one may overwrite the values recorded by the other. Most database
management systems have sub-systems to control the concurrency so that transactions are always
recorded with accuracy.

e Backup and Recovery Procedures

In a computer file-based system, the user creates the backup of data regularly to protect the valuable
data from damage due to failures to the computer system or application program. It is very time
consuming method, if amount of data is large. Most of the DBMSs provide the 'backup and recovery'
sub-systems that automatically create the backup of data and restore data if required.

e DatalIndependence

The separation of data structure of database from the application program that uses the data is called
data independence. In DBMS, you can easily change the structure of database without modifying the
application program.

Advantages of DBM'S

One of the main advantages of using a database system is that the organization can exert,via
theDBA, centralized management and control over the data. The database Administrator isthe
focus of the centralized control.

Any application requiring a change in the structure

Of adatarecord requires an arrangement with the DBA, who makes the necessary modifications

Such modifications do not affect other applications or Users of the record in question.

Reduction of Redundancies:

Centralized control of data by the DBA avoids unnecessary duplication of data and effectively
reduces the total amount of data storage required.

It aso eliminates the extra processing necessary to trace the required datain alarge mass of data.

Elimination of | nconsistencies:

The main advantage of avoiding duplication isthe elimination of inconsistencies that tend to be
present in redundant data files.

Any redundancies that exist in the DBMS are controlled and the system ensures that these
multiple copies are consistent.

SharedData:

A database allows the sharing of data under its control by any number of application programs or
users.

For example, the applications for the public relations

And payroll departments can share the same data.

| ntegrity:

Centralized control can also ensure that adequate checks are incorporated in the DBMSto
provide data integrity.

Data integrity means that the data contained in the database is both accurate and consistent.
Therefore, data values being entered for the storage could be checked to ensure that they fall
within a specified range and are of the correct format.

Datais of vital importance to an organization and may be confidential . Such confidential data

must not be accessed by unauthorized persons. The DBA who has the ultimate responsibility for
the datain the DBMSS can ensure that proper access procedures are followed, including proper
authentication schemes for accessto the DBMS and additional checks before permitting access
to sensitive data .Different levels of security could be implemented for various types of data and
operations.

Disadvantages of DBM S

Codt of software/hardware and migration:
A significant disadvantage of the DBMS system is cost .In addition to the cost of purchasing or

devel oping the software, the hardware has to be upgraded to alow for the extensive programs
and work spacesrequired for their execution and storage .

The processing overhead introduced by DBM S to implement security, integrity, and sharing of
the data causes a degradation of the response and through — put times .

An additional cost isthat of migration from atraditionally separate application environment to an
integrated one.

Problem associated with centralization :

While centralization reduces duplication, the lack of duplication requires that the database be
adequately backed up so that in the case of failure the data can be recovered. Centralization also
means that the data is accessible from a single source .

10

Thisincreases the potential severity of security breaches and disruption of the operation of the
organization because of downtimes and failures.

The replacement of a monoalithic centralized database by a federation of independent and
cooperating distributed databases resolves some of the problems resulting from failures and
downtimes.

Complexity of Backup and Recovery:

Backup and recovery operations are fairly complex inaDBMS environment, and thisis
exacerbated in a concurrent multi user database system .

Furthermore, a database system requires a certain amount of controlled redundancies and
duplication to enable accessto related dataitems.

APPLICATION OF DBMS:

Databases are used to support internal operations of organizations and to underpin online
interactions with customers and suppliers (see Enterprise software).

Databases are used to hold administrative information and more specialized data, such as
engineering data or economic models. Examples of database applicationsinclude computerized
library systems, flight reservation systems and computerized parts inventory systems.

Application areas of DBM'S

1. Banking: For customer information, accounts, and loans, and banking transactions.

2. Airlines. For reservations and schedule information. Airlines were among the first to use
databases in a geographically distributed manner - terminals situated around the world accessed
the central database system through phone lines and other data networks.

3. Universities: For student information, course registrations, and grades.

4. Credit card transactions: For purchases on credit cards and generation of monthly statements.

5. Telecommunication:. For keeping records of calls made, generating monthly bills, maintaining
balances on prepaid calling cards, and storing information about the communi cation networks.

6. Finance: For storing information about holdings, sales, and purchases of financial instruments
such as stoeks and bonds.

7. Sales. For.customer, product, and purchase information.

8. Manufacturing: For management of supply chain and for tracking production of itemsin
factories, inventories of itemsin warehouses/ stores, and orders for items.

9. Human resources:. For information about employees, salaries, payroll taxes and benefits, and
for generation of paychecks

11

https://en.wikipedia.org/wiki/Enterprise_software
https://en.wikipedia.org/wiki/Library
https://en.wikipedia.org/wiki/Flight_reservation_system
https://en.wikipedia.org/wiki/Parts_inventory_system

UNIT 11

Relational Model: Introduction to relational model, concepts of domain, attribute,
tuple, relation, importance of null values, constraints (Domain, Key constraints,
integrity constraints) and their importance BASIC SQL: Simple Database schema, data
types, table definitions (create, alter), different DML operations (insert, delete, update),
basic SQL querying (select and project) using where clause, arithmetic & logical
operations, SQL functions(Date and Time, Numeric, String conversion).

Relational Model concept

Relational model can represent as a table with columns and rows. Each row is known as a
tuple. Each table of the column has a name or attribute.

Domain: It contains a set of atomic values that an attribute can take.

Attribute: It contains the name of a column in a particular table. Each attribute Ai must have
adomain, dom(Ai)

Relational instance: In the relational database system, the relational instance is represented
by afinite set of tuples. Relation instances do not have duplicate tuples.

Relational schema: A relational schema contains the name of the relation and name of all
columns or attributes.

Relational key: In the relational key, each row has one or more attributes. It can identify the
row in the relation uniquely.

Example: STUDENT Relation

NAME ROLL_NO PHONE_NO ADDRESS AGE
Ram 14795 7305758992 Noida 24
Shyam 12839 9026288936 Delhi 35
Laxman 33289 8583287182 Gurugram 20
Mahesh 27857 7086819134 Ghaziabad 27

Ganesh 17282 9028 913988 Delhi 40

o Inthe given table, NAME, ROLL_NO, PHONE_NO, ADDRESS, and AGE are the
attributes.

o Theinstance of schema STUDENT has 5 tuples.
o 13 =<Laxman, 33289, 8583287182, Gurugram, 20>

Properties of Relations

o Name of therelation isdistinct from all other relations.

o Eachrelation cell contains exactly one atomic (single) value
o Each attribute contains a distinct name

o Attribute domain has no significance

o tuple has no duplicate value

o Order of tuple can have a different sequence

o The SQL NULL is the term used to represent a missing value. A NULL value in a
tableisavalue in afield that appearsto be blank.

o A field withaNULL value is a field with no value. It is very important to understand
that a NULL value is different than a zero value or afield that contains spaces.

o Syntax
The basic syntax of NUL L while creating atable.

SQL> CREATE TABLE CUSTOMERS(
ID INT NOT NULL,
NAME VARCHAR (20) NOT NULL,
AGE INT NOT NULL,
ADDRESS CHAR (25)
SALARY DECIMAL (18,2),
PRIMARY.KEY. (ID)

);
Here, NOT NULL signifies that column should always accept an explicit value of

the given datatype. There are two columns where we did not use NOT NULL, which
means these columns could be NULL.

o A field'with a NULL value is the one that has been left blank during the record
creation.

O O 0O O 0O oo o o

o

o Example

o The NULL value can cause problems when selecting data. However, because when
comparing an unknown value to any other value, the result is always unknown and
not included in the results. You must use the ISNULL or ISNOT NULL operators
to check for aNULL value.

o Consider the following CUSTOMERS table having the records as shown below.

T e E—— S SRR R —— S SRR =
o |ID|NAME |AGE|ADDRESS |SALARY |

T e E—— S SRR R — S SRR =

o |1|Ramesh|32|Ahmedabad|2000.00|

o [2]JKhilan|25|Delhi|1500.00|

o [3|kaushik|23|Kota2000.00|

o |4|Chaitali|25|Mumbai|6500.00|

o |5|Hardik|27|Bhopal|8500.00|

o |6|Komal|22| MP |

o |7|Muffy|24|Indore||

L T s S S — R —— R — +

o Now, following is the usage of the ISNOT NUL L operator.
o SQL>SELECT ID, NAME, AGE, ADDRESS, SALARY
o FROM CUSTOMERS

0 WHERE SALARY ISNOT NULL;

o This would produce the following result —

0 +-—+ +omt +- +

o |ID|NAME |AGE|ADDRESS |SALARY |

0 +-—+ +omt +- +

o | 1|Ramesh | 32| Ahmedabad | 2000.00 |

o | 2|Khilan | 25| Delhi | 1500.00 |

o | 3|kaushik | 23|Kota < | 2000.00 |

o | 4|Chaitali | 25| Mumbai . | 6500.00 |

o | 5|Hardik | 27 |Bhopal | 8500:00 |

0o +--—+ +o et + +

o Now, following isthe usage of the ISNULL operator.

o SQL>SELECT ID, NAME, AGE, ADDRESS, SALARY
o FROM CUSTOMERS

o WHERE SALARY ISNULL;

o’ This would produce the following result —

0o -+ + + +- +

o |ID|NAME |AGE|ADDRESS |SALARY |

o +----+ + + +- +

o | 6|]Koma | 22|MP | |

o | 7|Muffy | 24|Indore | |

ot + + +- +

In general, each NULL value is considered to be different from every other NULL in the
database. When a NULL is involved in a comparison operation, the result is considered to
be UNKNOWN. Hence, SQL wuses a three-valued Ilogic with valuesTrue,
False and Unknown. It is, therefore, necessary to define the results of three-valued logical
expressions when the logical

connectives AND, OR, and NOT are used.

TRUE FALSE UNKNOWN

TRUE TRUE FALSE UNKNOWN
FALSE FALSE FALSE FALSE

UNKNOWN | UNKNOWN FALSE UNKNOWN

TRUE FALSE UNKNOWN

TRUE TRUE TRUE TRUE
FALSE TRUE FALSE UNKNOWN
UNKNOWN TRUE UNKNOWN | UNKNOWN

TRUE

TRUE FALSE
FALSE TRUE

UNKNOWN | UNKNOWN

Integrity Constraints

o Integrity constraints are a set of rules. It is used to maintain the quality of information.

o Integrity constraints ensure that the data insertion, updating, and other processes have
to be performed in such away that data integrity is not affected.

o Thus, integrity constraint is used to guard against accidental damage to the database.

Types of Integrity Constraint

Integrity Constraint

¥
Domain Entity Integrity Referential Key Constraint
Constraint Constraint Integrity Constraint

1. Domain constraints

o Domain constraints can be defined as the definition of a valid set of values for an
attribute.

o The data type of domain includes string, character, integer, time, date, currency, etc.
The value of the attribute must be available in the corresponding domain.

Example:

1D NAME SEMENSTER | AGE
1000 Tom 15t 17
1001 Johnson 2nd 24
1002 Leonardo 5th 21
1003 Kate 3rd 19
1004 Morgan 8th A

Not allowed. Because AGE is an integer attribute

2. Entity integrity constraints
o Theentity integrity constraint states that primary key value can't be null.

o This is because the primary key value is used to identify individual rows in relation
and if the primary key has a null value, then we can't identify those rows.

o A table can contain anull value other than the primary key field.

Example:
EMPLOYEE
EMP_ID EMP_NAME SALARY
123 Jack 30000
142 Harry 60000
164 John 20000
, Jackson 27000

Not allowed as primary key can't contain a NULL value

3. Referential Integrity Constraints
o A referential integrity constraint is specified between two tables.

o In the Referential integrity congtraints, if a foreign key in Table 1 refers to the
Primary Key of Table 2, then every value of the Foreign Key in Table 1 must be null
or be available in Table 2.

Example:
(Table 13}
EMP_MNAME| MAME AGE D_HWo —|— Fareign key
1 Jack 20 11
2 Harmy 40 24
Jahn 27 18 — Mot allowed as O MNo 132 is
. not defined as a Primary
Devil 38 13 key of table 2 and In table 1,
ry C_Mo is a foreign key
defined
Relationships
(Table 2}
w
Primary Key D Mo D Location
11 Murnbai
24 Delhi
13 Moida

4. Key constraints
o Keysarethe entity set that is used to identify an entity within its entity set uniquely.

o An entity set can have multiple keys, but out of which one key will be the primary
key. A primary key can contain a unique and null value in the relational table.

Example:
1D NAME SEMENSTER | AGE
1000 Tom 15t 17
1001 Johnson 2nd 24
1002 Leonardo 5th 21
1003 Kate 3rd 19
1002 Morgan gth 22

Not allowed. Because all row must be unique

Oracle Built-In-Functions:

1. ASCII: Returnsthe number code that represents the specific character.
Query synatx:*ASCII(single_character)

2. CONCAT: Concatenates two or more strings together.
Query syntax: CONCAT (stringl,string2)

(SNAME, SRNO) from student;

3. LENGTH: Returnsthe length of the specified string
Query synatx: LENGTH(string)

QL>» select length{'hello') from dual;

ENGTH('"HELLO")

4. REPLACE: Replaces a sequence of characters in a string with another set of
character.
Query syntax: REPLA CE(expression,pattern,replacement)

» select replace(’good morning’, "'morning’,'day’) from dual;

String functionsin SQL:

1. LOWER: All thelettersin 'string_value' is converted to lowercase.

Query syntax: LOWER(string_value)
S0L> select lower('Hello World') from dual;

OWER("HELL

hello world

2. UPPER: All the letters in ‘string value’ is converted to upper case.
Query syntax: UPPER(string value)

» select upper(’'hello world') from dual;

ELLO WORLD

3. INITCAP: All the lettersin 'string_value' is converted to mixed case.
Query syntax: INITCAP(string_value)

SQOL> select initcap('hello world') from dual;

INITCAP("HE

ello World

4. LPAD: Returns 'string_value' left-padded with 'pad value' .length of the whole
string will be of 'n' characters.
Query syntax: LPAD(string_value, n, pad_value)

» select lpad('hello’,7,'#"') from dual;

5. RPAD: Returns ‘string_value’ right-padded with ‘pad value’, length of the whole
string will be of ‘n’ characters.
Query syntax: RPAD(string_value,n,pad_value)
ct rpad(hello’,7, '#") from dual;

Numeric functionsin SQL.:

1. ABS: Returns absolute value of the number ‘x’
Query syntax: ABS(x)

2. CEIL: Returns integer value that is greater than or equal to the number ‘x’
Query syntax: CEIL(X)

S0L> select ceil(5.432) from dual;

3. FLOOR: Returnsinteger value that is less than or equal to the number ‘x’
Query syntax: FLOOR(x)

LQL> select floor(5.432) from dual;

LOOR(5.432)

4. ROUND: Returns rounded off value of the number ‘x’ upto ‘y’.
Query syntax: ROUND(x,y)

SQL> select round(5.432,1) from dual;

0UND(5.432,1)

Datefunctionsin SQL:
1. ADD_MONTHS: Return a date value after adding ‘n’ months to the date ‘x’.
Query syntax: ADD_MONTHS(date,n)

>QL> SELECT ADD_MOMTHS('16-Sep-81", 3) FROM DUAL;

2. MONTHS BETWEEN: Returns the number of months between dates x1 and x2

Query syntax: MONTHS BETWEEN(xL,x2)

3. LAST_DAY: It is used to determine the number of days remaining in a month from
the date 'x" specified.

Query syntax: LAST _DAY(x)

Conversion functionsin SQL:

1. TO_CHAR: Converts Numeric and Date values to a character string value. It cannot be
used for calculations since it is a string value.

Query syntax: TO_CHAR (X [,y])

2. TO_DATE: Converts a valid Numeric and Character values to a Date value. Date is
formatted to the format specified by 'date_format'.

Query syntax: TO_DATE (x [, date_format])

3. NVL: If X" isNULL, replace it with'y". 'x" and 'y* must be of the same datatype.

Query syntax: NVL(x,y)

Queriesusing operatorsin SQL.

An operator manipulates individual data items and returns a result. The data items are called
operands or arguments. Operators are represented by special characters or by keywords. For
example, the multiplication operator is represented by an asterisk (*) and the operator that
tedts for nulls is represented by the keywords IS NULL. There are two general classes of
operators. unary and binary. Oracle Database Lite SQL also supports set operators.

Arithmetic operatorsin'sgl:

1.+ (unary operator): Makes operand positive.

2.-(unary operator): Negates operand.

select sal/5 from employee;

555

Comparisondper ator s

a)Equal to Operator(=): Checks if the values of two operands are equal or not, if yes then;
condition becomes true.

LQL> create table employee(ename varchar(1@),eid int,esal int);

able created.

SQL» inmsert into employee(ename,eid,esal) values('shri’,’1','38688");
row created.

LQL> insert into employee(ename,eid,esal) values(’ t,T27,725888°) ;
row created.

LQL> insert into employee(ename,eid,esal) values('arjun’,’'3",'508686");
row created.

SQL> insert into employee(ename,eid,esal) values('jesweer’,'4','658686");

row created.

SQL>» select ename from employee where esal=586608;

arjun

2.Not Equal to Operator(!=): Checks if the values of two operands are equal or not, if
values are not equal then;condition becomes true.

» select ename from employee where esal!=58000;

crinvi
jeswear

3.Greater than Operator (>):. Checks if the value of left operand is greater than the value of
right'operand, if yes then condition becomes true.

SQL>» select ename from employee where esal>380860;

arjun
[jesweer

4.Less than Operator (<):Checks if the value of left operand is less than the value of right
operand, if yes then condition becomes true.

4.Greater than or Equal to Operator (>=): Checks if the value of left operand is greater
than or equal to the value of right operand, if yes then condition becomes true.

arjun
jesweer
L ogical operators:

a)ALL Operator: The ALL operator is used to compare a value to all valuesin another value
Set.

b)AND Operator: The ALL operator is used to compare avalue to all values in another value

c) ANY Operator: The ANY operator isused to compare a value to any applicable value in
the list as per the condition.

CREATE TABLE

reating a basic table involves naming the table and defining its columns and each column's
datatype.

The SQL CREATE TABLE statement is used to create a new table.

Syntax

The basic syntax of the CREATE TABLE statement is as follows —

CREATE TABLE table_name(
columnldatatype,

column2datatype,
column3datatype,
columnNdatatype,
PRIMARY KEY (one or more columns)

);

CREATE TABLE is the keyword telling the database system what you want to do. In this
case, you want to create a new table. The unique name or identifier for the table follows the
CREATE TABLE statement.

Then in brackets comes the list defining each column in the table and what sort of datatype
it is. The syntax becomes clearer with the following example.

A copy of an existing table can be created using a combination of the CREATE TABLE
statement and the SELECT statement. You can check the complete details at Create Table
Using another Table.

Example

The following code block is an example, which creates a CUSTOMERS table with an ID as
aprimary key and NOT NULL are the constraints showing that these fields cannot be NULL
while creating records in this table —

SQL> CREATE TABLE CUSTOMERS(

ID INT NOT NULL,
NAME VARCHAR (20) NOT NULL,
AGE INT NOT NULL,

ADDRESS CHAR(25),
SALARY DECIMAL (18,2),
PRIMARY KEY (ID)

);

You can verify if your table has been created successfully by looking at the message
displayed by the SQL server, otherwise you can use the DESC command as follows —

SQL>DESC CUSTOMERS;

+--- -+ ———t + +- S +
| Field | Type | Null | Key | Default | Extra |
S + -t S o S +

|[ID |int(11) |NO |PRI| |]

| NAME |varchar(20) |NO | | |]
|AGE |int(11) |NO | | |]

| ADDRESS | char(25) |YES | |NULL | |
| SALARY |decimal(18,2) |[YES | |NULL | |
e S e — S — e E —— +
5 rowsin set (0.00 sec)

Now, you have CUSTOMERS table available in your database which you can use to store
the required information related to customers.

The SQL DROP TABLE statement is used to remove a table definition and all the data,
indexes, triggers, constraints and permission specifications for that table.

https://www.tutorialspoint.com/sql/sql-create-table-using-tables.htm
https://www.tutorialspoint.com/sql/sql-create-table-using-tables.htm

NOTE — You should be very careful while using this command because once a table is
deleted then all the information available in that table will also be lost forever.

Syntax

The basic syntax of this DROP TABLE statement is as follows —
DROP TABLE table _name;

Example

Let us first verify the CUSTOMERS table and then we will delete it:from the database as
shown below —

SQL> DESC CUSTOMERS;

S — S S — S S R -
|Field|Type|Null|[Key|Default|Extral
R S S — S S —— R -

[ID |int(11)|NO |[PRI |||

| NAME |varchar(20)| NO |||

|AGE |int(11)|NO |||

| ADDRESS |char(25)| YES ||NULL ||

|SALARY |decimal(18,2)| YES || NULL ||
S S —— S — S — —— B +

5 rows inset(0.00 sec)

This means that the CUSTOMERS table is available in the database, so let us now drop it as
shown below.

SQL> DROP TABLE CUSTOMERS;
Query OK,0 rows affected (0.01 sec)

The SQL INSERT INTO Statement is used to add new rows of data to a table in the
database.

Syntax
There are two basic syntaxes of the INSERT INTO statement which are shown below.

INSERT INTO TABLE_NAME (columnl, column2, column3,...columnN)
VALUES (valuel, value2, values,...valueN);

Here, columnl;column2, column3,...columnN are the names of the columns in the table into
which you want to insert the data.

Y ou may not need to specify the column(s) name in the SQL query if you are adding values
for all the columns of the table. But make sure the order of the values is in the same order as
the columns in the table.

The SQL INSERT INTO syntax will be as follows —
INSERT INTO TABLE_NAME VALUES (valuel,value2,values,...valueN);

Example

The following statements would create six recordsin the CUSTOMERS table.

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)
VALUES (1,'Ramesh’,32,'Ahmedabad’,2000.00);

INSERT INTO CUSTOMERS (ID,NAME,AGE, ADDRESS,SALARY)
VALUES (2,Khilan',25,'Delhi’,1500.00);

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)
VALUES (3,kaushik',23,'K ota,2000.00);

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS, SALARY)
VALUES (4,'Chaitali', 25, Mumbai',6500.00);

INSERT INTO CUSTOMERS (ID,NAME,AGE, ADDRESS,SALARY)
VALUES (5, Hardik',27, Bhopal’,8500.00);

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY)
VALUES (6,'Komal',22,'MP',4500.00);

You can create a record in the CUSTOMERS table by using the second syntax as shown
below.

INSERT INTO CUSTOMERS
VALUES (7, 'Muffy', 24, 'Indore', 10000.00);

All the above statements would produce the following records in the CUSTOMERS table as
shown below.

S S S — S —— R +
|ID|NAME |AGE |ADDRESS |SALARY . |
S S — S — S R S S R —— +
|1|Ramesh|32|Ahmedabad|2000.00|

2	K hilan	25	Del hi	1500.00
3	kaushik	23	Kotal2000.00	
4	Chaitali	25[Mumbai	6500.00	
5	Hardik	27	Bhopal	3500.00

|6|Komal|22| MP [4500.00]

|7|M uffy|24|Indore|10000.00|

S S s S — SR S R — +

The SQL SELECT statement is used to fetch the data from a database table which returns
this datain the form of aresult table. These result tables are called result-sets.

Syntax

The basic syntax of the SELECT statement is as follows —
SELECT columnl, column2, columnN FROM table_name;

Here, columnl, column2... are the fields of a table whose values you want to fetch. If you
want to fetch all the fields available in the field, then you can use the following syntax.

SELECT * FROM table _name;

Example

Consider the CUSTOMERS table having the following records —

S S — S — S —— e — +
|ID|NAME |AGE |ADDRESS |SALARY |
S S — S — S —— e — +
|1/Ramesh|32|A hmedabad]2000.00|

[2|K hilan|25|Delhi[1500.00)

13 kaushik|23|K ota[2000.00]
|4|Chaitali|25|Mumbai|6500.00]
|5|Hardik|27|Bhopal |8500.00)

6|Komal[22] MP 4500.00]|
[7|Muffy|24|Indore|10000.00|

S S — S — S e — +

The following code is an example, which would fetch the ID, Name and Salary fields of the
customers available in CUSTOMERS table.

SQL> SELECT ID, NAME, SALARY FROM CUSTOMERS,

Thiswould produce the following result —

ot + -+
|ID|NAME |SALARY |
-t + -+
1|Ramesh | 2000.00 |
2| Khilan | 1500.00 |
3 | kaushik | 2000.00 |
4
5

Chaitali	6500.00	
Hardik	8500.00	
6	Komal	4500.00
7	Muffy	20000.00
ot + -+

If you want to fetch all the fields of the CUSTOMERS table, then you should use the
following query.

+
I
I
I
I
I

SQL>SELECT * FROM CUSTOMERS;

Thiswould produce the result as shown below.

ot + + +- +
|ID|[NAME |AGE |ADDRESS |SALARY |
ot + + +- +

| 1] Ramesh | 32| Ahmedabad | 2000.00 |
| 2| Khilan | 25| Delhi | 1500.00 |

| 3| kaushik | 23| Kota | 2000.00 |

| 4] Chaitali | 25| Mumbai | 6500.00 |

| 5|Hardik | 27 |Bhopal | 8500.00 |

| 6|Koma | 22|MP | 4500.00 |

| 7|Muffy | 24 |Indore |10000.00 |
ot +omt +- +

The SQL WHERE clause is used to specify a condition while fetching the data from a
single table or by joining with multiple tables. If the given condition is satisfied, then only it
returns a specific value from the table. You should use the WHERE clause to filter the
records and fetching only the necessary records.

The WHERE clause is not only used in the SELECT gtatement, but it is also used in the
UPDATE, DELETE statement, etc., which we would examine in the subsequent chapters.

Syntax

The basic syntax of the SELECT statement with the WHERE clause is as shown below.

SELECT columnl, column2, columnN
FROM table name
WHERE [condition]

You can specify a condition using the comparison or logical operators like >, <, =, LIKE,
NOT, etc. The following examples would make this concept clear.

Example

Consider the CUSTOMERS table having the following records —

S S S — S — S —— R —— +
|ID | NAME |AGE |ADDRESS |SALARY |
S S S — S — S —— Fommmmmee +
|1|Ramesh|32|Ahmedabad|2000.00|

|2|K hilan|25|Delhi|1500.00|

|3|kaushik|23|K otal2000.00)
|4|Chaitali|25|Mumbai|6500.00|
|5|Hardik|27|Bhopal |8500.00|

|6|Komal|22| MP |4500.00]
|7|Muffy|24|Indore|20000.00|

S S S S — S +3 45 +

The following code is an example which would fetch the ID, Name and Salary fields from
the CUSTOMERS table, where the salary is greater than 2000 —

SQL> SELECT ID, NAME; SALARY
FROM CUSTOMERS
WHERE SALARY >2000;

This would produce the following result —

ot + -+
|ID [INAME |SALARY |
ot + -+

| 4| Chaitali | 6500.00 |
| 5| Hardik | 8500.00|
| 6| Komal | 4500.00]
| 7| Muffy | 10000.00 |
S S— + -+

https://www.tutorialspoint.com/sql/sql-operators.htm

The following query is an example, which would fetch the ID, Name and Salary fields from
the CUSTOMERS table for a customer with the name Hardik.

Here, it is important to note that all the strings should be given inside single quotes (").
Whereas, numeric values should be given without any quote as in the above example.

SQL> SELECT ID, NAME, SALARY
FROM CUSTOMERS
WHERE NAME ='Hardik’;

This would produce the following result —

N S— -+ —+
|ID |NAME |SALARY |
N S— -+ —+

| 5|Hardik | 8500.00|

The SQL AND & OR operators are used to combine multiple conditions to narrow data in
an SQL statement. These two operators are called as the conjunctive operators.

These operators provide a means to make multiple comparisons with different operators in
the same SQL statement.
The AND Operator

The AND operator allows the ‘existence of multiple conditions in an SQL statement's
WHERE clause.

Syntax
The basic syntax of the AND operator with a WHERE clause is as follows —

SELECT columnl, column2, columnN
FROM table ‘name
WHERE [condition1] AND [condition2]...AND [conditionN];

Y oucan-combine N number of conditions using the AND operator. For an action to be taken
by the SQL statement, whether it be a transaction or a query, al conditions separated by the
AND must be TRUE.

Example

Consider the CUSTOMERS table having the following records —

+-—--+ S S— +- +
|ID|NAME |AGE |ADDRESS |SALARY |
+-—--+ S S— +- +

| 1| Ramesh | 32| Ahmedabad | 2000.00 |
| 2| Khilan | 25|Delhi | 1500.00 |

| 3| kaushik | 23| Kota | 2000.00 |

| 4| Chaitali | 25| Mumbai | 6500.00 |

| 5|Hardik | 27 |Bhopal | 8500.00 |

| 6| Koma | 22|MP | 4500.00 |

| 7| Muffy | 24|Indore |210000.00 |

ot S +- +

Following is an example, which would fetch the ID, Name and Salary fields from the
CUSTOMERS table, where the salary is greater than 2000 and the age is less than 25 years

SQL> SELECT ID, NAME, SALARY
FROM CUSTOMERS
WHERE SALARY >2000 AND age <25;

This would produce the following result —

S — + -+
|ID [INAME | SALARY |
S — + -+

| 6|Komal | 4500.00 |

| 7| Muffy | 10000.00 |
S + —t

The OR Operator

The OR operator is used to combine multiple conditions in an SQL statement's WHERE
clause.

Syntax
The basic syntax of the OR operator with a WHERE clause is as follows —

SELECT columnl, column2, columnN
FROM table name
WHERE [conditionl] OR [condition2]...OR [conditionN]

Y ou can combine N number of conditions using the OR operator. For an action to be taken
by the SQL statement, whether it be a transaction or query, the only any ONE of the
conditions separated by the OR must be TRUE.

Example

Consider the CUSTOMERS table having the following records —

B S S R R — +
|ID [INAME | AGE|ADDRESS |SALARY |
S S R R — +
|1|Ramesh|32|Ahmedabad|2000.00|

|2|K hilan|25|Delhi|1500.00|

|3|kaushik|23|K ota]2000.00|

|4|Chaitali|25|M umbai|6500.00|
|5|Hardik|27|Bhopal |8500.00|

|6|Komal|22| MP |4500.00]|
|7|Muffy|24|Indore|10000.00|

S S — S B S — +

The following code block hasa query, which would fetch the ID, Name and Salary fields
from the CUSTOMERS table, where the salary is greater than 2000 OR the age is less than
25 years.

SQL> SELECT ID, NAME, SALARY
FROM CUSTOMERS
WHERE SALARY >2000 OR age <25;

This would produce the following result —

S — + -+
|ID INAME |SALARY |
S — + -+

3] kaushik	2000.00	
4] Chaitali	6500.00	
5	Hardik	8500.00
6	Komal	4500.00
7	Muffy	10000.00
+----+ + -+

The SQL UPDATE Query is used to modify the existing records in atable. Y ou can use the
WHERE clause with the UPDATE query to update the selected rows, otherwise all the rows
would be affected.

Syntax

The basic syntax of the UPDATE query with a WHERE clause is as follows —

UPDATE table_ name
SET columnl = valuel, column2 =value2...., columnN = valueN
WHERE [condition];

Y ou can combine N number of conditions using the AND or the OR operators.
Example

Consider the CUSTOMERS table having the following records —

R R S L B — +
|ID [INAME | AGE |ADDRESS | SALARY |
S C R T —— +
|1|Ramesh|32|A hmedabad|2000.00|

|2|K hilan|25|Del hi{1500.00)

|3|kaushik|23|K otaj2000.00|

|4|Chaitali|25|M umbai|6500.00|
|5|Hardik|27|Bhepal|8500.00|

|6|Komal|22| MP |4500.00]|
|7|Muffy|24|Indore|10000.00|

S S S — N B S — +

The following query will update the ADDRESS for a customer whose ID number is 6 in the
table.

SQL> UPDATE CUSTOMERS
SET ADDRESS ='Pune'
WHERE ID =6;

Now, the CUSTOMERS table would have the following records —

S — ST S & +--- +
|IDNAME |AGE |ADDRESS |SALARY |
S — ST S & +--- +

| 1| Ramesh | 32| Ahmedabad | 2000.00 |

| 2|Khilan | 25|Dehi | 1500.00 |

| 3|kaushik | 23|Kota | 2000.00 |

| 4| Chaitali | 25| Mumbai | 6500.00 |

| 5| Hardik | 27 |Bhopal | 8500.00 |

| 6] Komal | 22|Pune | 4500.00 |

| 7|Muffy | 24|Indore |10000.00 |

ot S S +--- +

If you want to modify all the ADDRESS and the SALARY. column values in the
CUSTOMERS table, you do not need to use the WHERE clause as the UPDATE query
would be enough as shown in the following code block.

SQL> UPDATE CUSTOMERS
SET ADDRESS ='Pune’, SALARY =1000.00;

Now, CUSTOMERS table would have the following records —

+ommt ST + +
|ID|NAME |AGE | ADDRESS|SALARY |
+--—+ -—+ + + +

| 1| Ramesh | 32|Pune |1000.00 |

| 2| Khilan | 25|Pune |1000.00]

| 3| kaushik | 23 |Pune |21000.00 |

| 4| Chaitali | 25| Pune |1000.00]|

| 5|Hardik | 27 | Pune | 2000.00 |

| 6| Komal | 22|Pune |1000.00 |

| 7| Muffy | 24| Pune" |1000.00 |
+--—+ -—+ + + +

The SQL'DELETE Query is used to delete the existing records from a table.

You can use the WHERE clause with a DELETE query to delete the selected rows,
otherwise all the records would be deleted.

Syntax

The basic syntax of the DELETE query with the WHERE clause is as follows —

DELETE FROM table name
WHERE [condition];

Y ou can combine N number of conditions using AND or OR operators.

Example

Consider the CUSTOMERS table having the following records —

S — ST S +--- +
|ID|NAME |AGE |ADDRESS |SALARY |

+--mt e +- +

| 1|Ramesh | 32| Ahmedabad | 2000.00 |
| 2|Khilan | 25|Dehi | 1500.00 |

| 3|kaushik | 23|Kota | 2000.00 |

| 4| Chaitali | 25| Mumbai | 6500.00 |

| 5|Hardik | 27 |Bhopal | 8500.00 |

| 6|Komal | 22|MP | 4500.00|

| 7|Muffy | 24|Indore |10000.00 |
+--t ot +- +

The following code has a query, which will DELETE a customer, whose ID is 6.

SQL> DELETE FROM CUSTOMERS
WHERE ID =6;

Now, the CUSTOMERS table would have the following records.

ot S S +- +
|ID|NAME |AGE |ADDRESS |SALARY |
ot S S +- +

I

|

I

I

1| Ramesh | 32| Ahmedabad | 2000.00 |
2| Khilan | 25| Dehi | 1500.00 |

3| kaushik | 23| Kota | 2000.00 |

4| Chaitali | 25| Mumbai | 6500.00 |

| 5|Hardik | 27 |Bhopal | 8500.00 |

| 7| Muffy | 24|Indore |210000.00 |
+--—+ -—+ + +- +

UNIT-111

The E/R Models, The Relational Model, Relational Calculus, Introduction to
Database Design, Database Design and Er Diagrams-Entities Attributes, and
Entity Sets-Relationship and Relationship Sets-Conceptual Design With the Er
Models, The Relational Model Integrity Constraints Over Relations- Key
Constraints —Foreign Key Constraints-General Constraints, Relational Algebra
and Calculus, Relational Algebra- Selection and Projection- Set Operation,
Renaming — Joins- Division- More Examples of Queries, Relational Calculus,
Tuple Relational Calculus- Domain Relational Calculus.

1. OVERVIEW OF DATABASE DESIGN: (F******x*kx*xx)

- The database design process can be divided into six steps. The ER model is most relevant
to the first three steps:

(1) Requirements Analysis. The very first step in designing a database application is to
understand what data is to be stored in the database, what applications must be built on the
database and what operations must be performed on the database. In other words, we must
find out what the users want from the database. This process involves discussions with user
groups, astudy of the current operating environment, how it is expected to change an analysis
of any available documentation on existing applications and so on.

(2) Conceptual Database Design: Theinformation gathered in the requirements analysis step
is used to develop a high-level description of the data to be stored in the database, along with
the congtraints that are known to hold over this data. The goal is to create a description of the
datathat matches to how both users and developers think of the data. This facilities discussion
among all the people involved in the design process i.e., developers and as well as users who
have no technical background. In simple words, the conceptual database design phase is used
in drawing ER model.

(3) Logical Database Design: We must implement our database design and convert the
conceptual database design into a database schema (a description of data) in the data model
(a collection of high level data description constructs that hide many low level storage details)
of the DBMS. We will consider only consider relational DBMSs, and therefore, the task in
the logical design step is to convert the conceptual database design in the form of an ER
schema (Entity-Relationship schema) into arelational database schema.

(4) Schema-Refinement: The fourth step in database design is to analyze the collection of
relations in our relational database schemato identify future problems, and to refine (clear) it.

(5) Physical Database Design:. This step may simply involve building indexes on some
tables and clustering some tables, or it may involve redesign of parts of the database schema
obtained from the earlier design steps.

(6) Application andSecurity Design: Any software project that involves a DBMS must
consider applications that involve processes and identify the entities.

Example: Users, user groups, departments, etc.

—>We must describe the role of each entity in every process. As a security design, for each
role, we must identify the parts of the database that just not is accessible and we must take
stepsto ensure that these access rules are enforced.

Conceptual design:

e What aretheentitiesand relationshipsin the enterprise?

e What information about these entities and relationships should be stored in the
database?

e What aretheintegrity constraintsor businessrulesthat hold?

e A database schema in the ER Mode can be represented pictorially (ER
diagrams)

e An ER diagram can be mapped into arelational schema

E-R MODEL:

—>An entity-relationship model (ER model) is a systematic way of describing and defining
a business process. An ER model istypically implemented as a database.

- The main components of E-R model are: entity set and relationship set.

—>Here are the geometric shapes and their meaning in an E-R Diagram —
Revtangle: Represents Entity sets.

Ellipses: Attributes
Diawmonds: Relationship Set

Liners: They link attributes to Entity Sets and Entty sets to Relatonship
Set

Donble Elip=es: Mulovalued Artributes
Dazbhed Ellippses: Darived Attributes
Domble Rectangles: Weal: Entity Sets

Domnble Lines: Total participation of an entity in a relationship zet

Symbols and Notations

Entity

Relationship

Attribute

Weak Entity

Weak Entity relationship

Multivalued Attribute

Key Attribute

vEEE b

* Composite Attribute

%f@@@ ok

P N

Rl Derived Attribute

—h

N Cardinality Ratio 1:N
E1 ® E2 | forE1:E2InR

El —®= E> Total Participation

i N Cardinality Ratio
El *<1Q>— E2 | betwasan E1 and E2
in1:R

El N 1 E> Many to One
- Relationship Type

2. ENTITIES ATTRIBUTES, AND ENTITY SETS:

ENTITIES:
An Entityis an object that exists and is distinguishable from other objects.

Example: Specific person, Company, Event, Plant, Building, Room, Chair, Course,
Employee etc.

In E-R Diagram, an entity is represented using rectangles. Name of the Entity is written
inside the rectangle.
> Examples: STUDENT, EMPLOY EE, ACCOUNT etc.

STUDENT EMPLOYEE ACCOUNT

A Strong entity is represented by simple rectangle as shown above.
—>Consider an example of an Organization. Employee, Manager, Department, Product and
many more can be taken as entities from an Organization.

EMPLOYEE Works DEPARTMENT
for

A Wesak entity is an entity that depends on another entity. Weak entity doesn’t have key
attribute of their own. Double rectangle represents weak entity.

Examples: CLASS _SECTION, DEPENDANT etc.

“ DEPENDANT

‘ CLASS_SECTION ‘

An Entity setisa set of entities of the same type that share the same properties.

- An Entity set isacollection of similar entities.

Examples. set of al persons, companies, Job positions, Courses, Academic staff, Managers,
Employees etc.

—All entities in an entity set have the same set of attributes. (Until we consider ISA
hierarchies, anyway!)

—Each entity set has a key.

—Each attribute has a domain.

—->The Employees entity set with attributes ssn, name, and lot_is shown in Figure 2.1. An
entity set is represented by a rectangle, and an attribute is.represented by an oval. Each

attribute in the primary key is underlined.
v

——._'—_\—\—

= T

‘ Employaes ‘

Figure 2.1 Tho Employveo: Entity Set

ATTRIBUTES:

An entity is represented by a set of attributes. Attributes are descriptive properties
possessed by each member of an entity set.

An Attribute describes a property or characteristics of an entity. For example, Name, Age,
Address etc can be attributes of a Student. An attribute is represented using eclipse.

Phone
number

STUDENT

Example:
Customer=(customer_id, customer_name, customer_street, customer_

city)

loan = (loan_number, amount)

Key Attribute:
Key attribute represents the main characteristics of an Entity. It is used to represent Primary
key. Ellipse with underlying lines represents Key Attribute.

Phone
number

STUDENT

Composite Attribute:
An attribute can dso have their own atributes. These attributes are known

as Composite attribute.
- Composite attributes can be divided into subparts. For example, an attribute name
could be structured as a composite attribute consisting of first-name, middle-initial, and last-

name.
Attribute Divided into sub parts. Eg. Name (First name, Middle Name, last name)

RH"“H-_
Cikw Q Sta 19%
-_— i

Multlvalued Attributes:(********************)

An attribute that can hold multiple values is known as multivalued attribute. We represent it
with double ellipses in an E-R Diagram. E.g. A person can have more than one phone
numbers so the phone number attribute is multivalued.

There may be instances where an attribute has a set of values for a specific entity. Consider an
employee entity set with the attribute phone-number. An employee may have zero, one, or
several phone numbers, and different employees may have different numbers of phones. This
type of attribute is said to be attribute having more than one values. Eg.Phone Number.

Derived Attribute: A derived attribute is one whose value is dynamic and derived from
another attribute. It is represented by dashed ellipses in an E-R Diagram. E.g. Person age is a
derived attribute as it changes over time and can be derived from another attribute (Date of
birth).

E-R diagram with multivalued and derived attributes:

Student @

Total Participation of an Entity set:
A total participation of an entity set represents that each entity in entity set must have at least

one relationship in a relationship set. For example: In the below diagram each college must
have at least one associated student.

Stu_Id tu_Addr (€al 1D > E€ol_Namg

Student | College

E-R Digram with total participation of College entity set
in StudylIn relationship Set - This indicates that each
college must have atleast one associated Student.

3. RELATIONSHIPSAND RELATIONSHIP SETS: (****)

—A relationship is an association (connection) among (between) two or more entities.

‘ Employees @ Departments

Figure 2.2 The Works In Relationship Set

Example: We may have the relation Works _In among entities, Employees and Departments
i.e., an Employee Works_In a Department.

—A relationship set is a collection of similar relationships or we collect a set of similar
relationships into a relationship set.
A relationship set can be thought of as a set of n-tuples:

{(el, ...,en) |el e E]L, ..., en € En}

Each n-tuple denotes a relationship involving n entities €1 through en, where entity ei is in
entity set Ei. Note that several relationship sets might involve the same entity sets. For
example, we can also have a Manages relationship set involving Employees and Departments.

A relationship can also have descriptive attributes. Descriptive attributes are used to
record information about the relationship, rather than about any one of the participating
entities.

Example: In Works In relationship ‘since” attribute captures information about participating
entities Employees and Departments.

But, for a given employee-department pair, we cannot have more than one associated ‘since’
attribute value.

—>An instance of a relationship (or) relationship instance set is a set of relationships. An
instance can be thoughtof as a ‘snapshot’ (a short description) of the relationship set at some
instant intime.

An instance of the Works In relationship set is shown in Figure 2.3. Each Employees entity is
denoted by its ssn,.and each Departments entity is denoted by its did, for simplicity.

The ‘since’ value is shown beside each relationship as ‘many-to-many’ relationships and total
participation i.e., the employee with ssn (123-22-3666) Works In did (51) since 1/1/91,
similarly the employee with ssn (231-31-5368) Works In did (51) since 3/3/93 and so on.

/ 12 1/2
ﬂs-}.z _31606 | gpac—" _I.-T_ 32591 - ""‘---—-__?;’ ~ =
L | 51
[(e e T
Tl——

| 121-24-3650 |agp___

| —w s /
L) ! =
| 223-32-6310 | - / __"’Li- Leo P
T —

EMPLOYEES WORRS DN DEPARTMENTS
Toeal pavicapalian Bzl 1o MAY Lzl pariie ppritooh

Flgure 2.3 An Tistance of the Works In Relaticnszhlp Set

—>Ternary relationship is an association (connection) between three entities an employee, a
department, and a location.

Example: Each department has offices in several location and we want to record the location
at which each employee works.

—
- e .

L Qam@ - Gl dname) pas
& ™ o

Employees | +< Works_In Departments
pioy ~ :fs-" P
e | - = e
{1_ address :} ‘ Locations f:__ca pacit},r_:l

Figure 2.4 A Ternary Relationship set

—>The entity sets that participate in a relationship set need not be only one. Sometimes a
relationship might involve two entities in the same entity set.

For example, consider the Reports To relationship set that is shown in Figure 2.5. Since
employees report to other employees, every relationship in Reports To is of the form (empl,
emp2), where both empl and emp2 are entities in Employees.

Employoas

S oy i sar Sl oo el et e

Figure 2.5 The BEeports_To Relation=zhip set

However, they play different roles. empl reports to the managing employee emp2, which is
reflected in the role indicators supervisor and subordinate in Figure 2.5.

If an entity set plays more than one role, the role indicator concatenated with an attribute
name from the entity set gives us a unique name for each attribute in the relationship set. For
example, the Reports To relationship set has attributes corresponding to the ssn of the
supervisor and the ssn of the subordinate, and the names of these attributes are supervisor ssn
and subordinate ssn.

4. ADDITIONAL FEATURES OF ER MODEL:

—>Following constructs are the features in the ER Model that allows us to describe some
common properties of the data in expressing ER Model.

Key Congtraints, (*******%x)
Consider the Works _In relationship shown in Figure 2.2.

_Crame> Csince =
(Ssn ﬁ i JC Int> /J f'fdld I (ﬁt}udgat\)

_.--"

l pir.::yees —"":;"_u:'l."crk s_in}_,e'-“*

-

Departments

H'H.,-"'
Figure 2.2 The Works In Relationship Set

An employee can work in several departments, and a department can have several employees,
asillustrated in the Works_In instance shown in Figure 2.3.

T

LA 1Ae
i
A3 T
e
_ ke TN
f i |
i — — _—-II——'-l 1] |
TN "]
392 4/ e _f;___ﬂ,f”
-
EMPLOYEES WORES MM DEFPARTMENTES
Tatal paricipialan Rzl W Maty ‘Lz | par e ipeickh

Fikgure 2.3 An Tistances of the Works Ion Relationshilp Set

Here, Employee 231-31-5368 has worked in Department 51 since 3/3/93 and-in Department
56 since 2/2/92. Department 51 has two employees. Thus one department can have many
employees.

But, if we want to have only one employee in department, then it“is an example of Kay
constraint.

Example: Consider another relationship set called Manages between the Employees and
Departments entity setsasin the Figure 2.6.

Figure 2.6 Kevr Constraint on Mansges

Here, each department can have only one manager. The restriction that each department can
have only one manager is an example of key constraints. This restriction is indicated in the
above ER diagram by using an arrow from departments to manages, such that a department
can have only one manager.

An instance of the Manages relationship set is shown in Figure 2.7. While this is aso a
potential instance for the Works In relationship set, the instance of Works In shown in Figure
2.3 violates the key constraint on Manages.

- =
T /
-
/|23-21 3.5 ¥imi

i 23 [-31-536% \r

|\ ezl t““--l——f———

Rl 213-32-63 16 |-./

k5 i
;-7 e
) M
EMPLOVELES MaAMNALGESR DPEFARTMTHTS
Fatisal Participarwm Cirwe 10 Mlarey Toeal parincepralkin

Flgure 2.T An Ingtence of the hManprpea Relaticnahip Sl

Key Constraintsfor Ternary Relationships:

In Figure 2.8, we show aternary relationship with key constraints. Each employee works in

at most one department, and at a single location.

An instance of the Works In3 relationship set<is shown in Figure 2.9. Notice that each
department can be associated with several employees-and-locations, and each location can be
associated with several departments and employees; however, each employee is associated

with a single department and location.

(/;_
e

(=

address Locwlions

W

S~

Figura 3.8 A Tersary Relationship Set with Key Conslraioks

DEFARTMINTS ff""f H'\
& _,_J| a1 | .
-t w

f’@'@&ﬁi .
[[msele b _ |
ml— -

EMTLOY LIS

ey comannim

Flgure .9 An Iuatance of Worlka_[nd

Participation Constraints: (*******x*%x)
The ER diagram in Figure 2.10 shows both the Manages and Works_In relationship sets and

al the given constraints. If the participation of .an entity set in a relationship set is total, the
two are connected by a thick line; independently, the presence of an arrow indicates a key
congtraint. The instances of Works_In and Manages shown in Figures 2.3 and 2.7 satisfy all
the constraints in Figure 2.10.

‘ Employees @ Departments

since

Figure 2.10 Manages and Works_In

Weak Entities:
An entity set attributes that does not have a primary key within them, is termed as a weak

entity set. As an example, consider the entity set Dependents, which has the two attributes
pname and age, illustrated with the ER diagram as shown in Figure 2.11

=

Figure 2.11 A Yyeak Entity Set

A dependent is an example of a weak entity set. A weak entity can be identified uniquely
only by considering some of its attributes in conjunction with the primary key of another
entity, which is called the identifying owner.

The following restrictions must hold:

- The owner entity set and the weak entity set must participate in a one-to-many relationship
set (one owner entity is associated with one or more weak entities, but each weak entity has a
single owne).

—>This relationship set is called the identifying relationship set of the weak entity set. The
weak entity set must have total participation in the identifying relationship set.

The Dependents weak entity set and its relationship to Employees is shown in Figure 2.11.
The total participation of Dependents in Policy is indicated by linking them with a dark line.
The arrow from Dependents to Policy indicates that each Dependents entity appears in at most
one Policy relationship. To underscore the fact that Dependents is a weak entity and Policy is
its identifying relationship, we draw both with dark lines. To indicate that pname is a partial
key for Dependents; we underline it using a broken line. This means that there may well be
two dependents with the same pname value.

ClassHierarchies:.

To classify the entities in an entity set into subclass entity is known as class hierar chies.
Example: we might want to classify Employees entity set into subclass entities Hourly Emps
entity set and a Contract Emps entity set to distinguish the basis on which they are paid.
Then the class hierarchy isillustrated as shown in Figure 2.12.

Employees
TS
N &
/ \

Hourly Emps

Contract_emps

Figure 2,12 Class hierarchy
This class hierarchy illustrates the inheritance concept. Where, the subclass éttributes | SA
(read as: is a) superclass attributes, indicating the “is a” relationship (inheritance concept).
Therefore, the attributes defined for a Hourly Emps entity set are.the attributes of
Hourly Emps plus attributes of employees (because subclass can have superclass properties).
Likewise the attributes defined for a Contract_ Emps set are the attributes of Contract Emps
plus attributes of Employees.

—2A class hierarchy can be viewed in one of two ways:

Specialization:

—>An employee is specialized into subclasses. Specialization is the process of identifying
subsets (subclasses) of an entity set (the superclass) that share some distinguishing
characteristics. Here, the superclass (Employees) is defined first, the subclasses
(Hourly_Emps, Contract Emps etc.) are defined next and subclass-specific attributes and
relationship sets are then added.

Generalization:

—>Generalization is the process of identifying(defining) some generalized (common)
characteristics of a collection of (two or more) entity sets and creating a new entity set that
contains entities possessing these common characteristics. Here, the subclasses
(Hourly_Emps, Contract Emps, etc.,) are defined first the superclass (Employees) is defined
next.

In shortly, Hourly Emps and Contract Emps are generalized by Employees.

- The class hierarchy can specify two kinds of constraints. They are

Overlapped Constraints:

Overlap constraints determine whether two subclasses are allowed to contain the same entity.
Example: can Akbar be both a Hourly Emps entity and a Contract_ Emps entity? The answer
is no.

Other example, can Akbar be both a Contract Emps entity and a Senior_ Emps entity (among
them) the answer is, Yes.

Thus, this is a specialization hierarchy property. We denote this by writing “Contract Emps
overlaps Senior Emps”.

Covering Constraints:
Covering constraints determine whether the entities in the subclasses collectively include all
entities in the superclass.

Example: Should every Employees entity be a Hourly Emps or Contract_ Emps? The answer
is, No. He can be a Daily_Emps.

—>Other example, should every Motor_Vehicle (superclass) be a bike (subclass) or a car
(subclass)? The answer is yes.

Thus generalization hierarchies’ property is that every instance of a superclass is an instance
of a subclass.

We denote this by writing “bikes and cars cover Motor Vehicles”

AGGREGATION (**************************)

- Used when we have to model arelationship involving (entity sets and) arelationship set.
->Aggregation allows us to indicate that a relationship set (identified through a‘dashed box)
participates in another relationship set.

—>Aggregation alows a relationship set to be treated as an entity set for purposes of
participation in (other) relationship sets.

This isillustrated in Figure, with a dashed box around Sponsors (and its participating entity
sets) used to denote aggregation. This effectively allows us to treat Sponsors as an entity set
for purposes of defining the M onitors relationship set.

e

@ @ dname

yd

Departmants | |

SAFFIEFFIIFFINIFFIIFFENFANTFFYEE

Figure. Aggregation

Restaurant Example:

res ol arst

=7 burys

supplier W food

'“—s.._\wd_,_f"”

Note:

—>For Ternary relationship, it can only see which specific/restaurant buys what kind food
from which supplier.

—>For Aggregation, you have more information about which supplier supplies a food item.
Any restaurant needs that item can choose from that.list.

Uses of Aggregation:

We use an aggregation, when we need to express a relationship among relationships. Thus,
there are really two distinct relationships; sponsors and monitors, each with its own attributes.
Example: The Monitors relationship has an attribute until that records the ending date until
when the employee is appointed as the sponsorship monitoring.

5. CONCEPTUAL DATABASEDESIGN WITH ER- DIAGRAMS:
Developing an ER diagram presents several design choices, including the following:

e Should a.concept be modeled as an entity or an attribute?

e Should a concept be modeled as an entity or a relationship?

e What arethe relationship sets and their participating entity sets? Should we use
binary or ternary relationships?

e Should we use aggregation?

Entity Vs Attributes:
While identifying the attributes of an entity set, it is sometimes not clear, whether a property
should be modeled as an attribute or as an entity set.

- Should address be an attribute of Employees or an entity (connected to Employees by a
relationship)?
—>Depends upon the use we want to make of address information, and the semantics of the
data
e |f we have several addresses per employee, address must be an entity (since attributes
cannot be set-valued).
e |f the structure (city, street, etc.,) is important, e.g., we want to retrieve employeesin a
given city, address must be modeled as an entity (since attributes values are atomic).

" Works-In4 does not allow an employee to work in a department for two or more
periods. A relationship is uniquely identified by the participating entities.

R = {(€5; +es; €5)] €1 & Eyj «ovy S5 E,F

G—E'_—D C::){F_—} nam_}
G [| [G | G

IEmpI:}yees — ‘:lwprks ln-i A — Departmenls

. Similar to the problem of wanting to record several working periods for an employee
in Work_In4. We want to record several values of the descriptive attributes for each
instance of thisrelationship. Accomplished by introducing new entity set, Duration.

S name) N ___(dname>
C& - T ':f_l':'t - & s, d:_k 'fhuclget 2
= — -"'--- -\._ "-\-.__
[plnyees]—RHWELKE I:L-’”' Departments |

QE—""_T:) | Duration '\R_E:)

Entity Vs Relationship:
It is not always clear whether an object is best expressed by an entity set or arelationship set.

Example: If a manager gets a separate discretionary budget (dbudget) for each department he
or she manages.

- patl

| Employees

Manages2

‘_‘ Departments ‘

What if a manager gets a discretionary budget that covers all managed departments?
o Redundancy: dbudget stored for each department managed by the manager.
o Mideading: suggests dbudget is associated with department — manager combination.

i — (since > _— Cdname>
I Employees | | did Cbudget >
. H_F__r"'FJ-_H"H-__ I —
Q f;i__hd?nagasg:::*—l Departments ‘
_,-'—""__ﬂ_-}--

e
| e

Managers |—dbudget >

Binary versus Ternary Relationships:
It is always possible to replace a non-binary (n-array, for n>2) relationship set by a number of
distinct binary relationship sets.

e A Bad design below if:
Each policy is owned by just 1 employee, and, Dependents is a weak entity set, and each
dependent is tied to the covering policy.

Bad design: Policies involves in two relationships.

@D
T o™ B
Employees Dependents

Policies

@ @ Bad design

What are the additional constraintsin 2" diagram?
Better design:

|

Dependents

Employees

T

@

In this example:

two binary relationships | Policies -
are better than one T '&—.'j}_:}’—“_ st g
ternary relationship policyid > Ccost

Another example: The contract specifiesthat a supplier will supplysome quantity of a part
to a department.

———— --__\-ﬂ\"".
|'f m‘.- {._qw,x“J ——— —_—
S e SN . ¢ ™ (" ™
S J S J J: i il ok~ e Wl P |
-___;-:_“_'hu.. rrﬂ'_d_"—_,.l-—" __.a-"'- “‘“-\,_H __.'“‘\ _'_,.f'"
Parts {:@Entract:s}-— Departments |
In this example: =
Suppliers |

a ternary relationship is = =
better than three binary ~ —~ 7
relationships e et

Adaregation Vs Ternary Relationships:

-> The choice between using aggregation or aternary relationship is mainly determined by the
existence of a relationship that relates a relationship set to an entity set (or second relationship
set). The choice may also be guided by certain integrity constraints that we want to express.

- Themonitors is adistinct relationship, with a descriptive attribute. (In Figure)

Projects-

ANEEER EREFERIANE FENR D

e
e
[
w0
‘

Jl (111 01] |

E

N NN NN NN NS N I NN N LN I N NN NN SN I NN I NN NN LN NN N NN AN N EEERLE e e
Figure. Apgregallan

—>1If we don’t need to record the until atribute of Monitors, then'we might reasonably use a

ternary relationship. (In Figure)

—>Also, it can say that each sponsorship is monitored by at most one employee.

Garted_om

Prnja:tﬁl@%ﬂﬂﬂ.ﬂﬂmrﬂnm

Figmre, Using Ternary Relathonshipy Inesteadl of AgFregation.

ER DIAGRAMS EXAMPLES

1) Entity Relationship (ER) Modeling - Learn with a Complete Example

Here we are going to design an Entity Relationship (ER) model for a college database. Say
we have the following statements.

A college contains many departments

Each department can offer any number of courses

Many instructors can work in a department

An instructor can work only in one department

For each department thereisa Head

An instructor can be head of only one department

Each instructor can take any number of cour ses

A course can be taken by only oneinstructor

A student can enroll for any number of courses
10 Each course can have any number of students

Step 1: Identify the Entities

What are the entities here?

WCoNU~WNE

From the statements given, the entities are

1. Department
2. Course
3. Instructor
4. Student
Step 2: Identify therelationships

1. One department offers many courses. But one particular course can be offered by only
one department. hence the cardinality between department and course is One to Many
(L:N)

2. One department has multiple instructors. But instructor belongs to only one
department. Hence the cardinality between department and instructor is One to Many
(L:N)

3. One department has only one head and one head can be the head of only one
department. Hence the cardinality is oneto one. (1:1)

4. One course can be enrolled by many students and one student can enroll for many
courses. Hence the cardinality between course and student is Many to Many (M:N)

5. One course is taught by only one instructor. But one instructor teaches many courses.
Hence the cardinality between course and instructor is Many to One (N :1)

Step 3: Identify the key attributes

e "Departmen_Name" can identify a department uniquely. Hence
Department_Name is the key attribute for the Entity "Department”.

e Course ID isthekey attribute for "Course" Entity.
e Student_ID isthe key attribute for "Student" Entity.
e Ingructor_ID isthe key attribute for "Instructor" Entity.

Step 4: Identify other relevant attributes

e For the department entity, other attributes are location

e For course entity, other attributes are course_name, duration
e For instructor entity, other atributes are first_name, last_name, phone
e For student entity, first_name, last_name, phone

Step 5: Draw complete ER diagram
By connecting all these details, we can now draw ER diagram as given below.

2) ER DIGRAM FOR COLLEGE DATABSAE

Location

Department

Ceorie Imstrector

3) ER DIGRAM FOR AIRLINES- RESERVATION SYSTEM

AJREENES

ECKIES
TICRLT

BOMON NG OFFICE

@ candEon

4) ER Diagram for Hospital M anagement System:

E-R Disgram of Hospiial Management System

Ph.No
Gender

5) ER Diagram for Banking System

BRANCH
BANKER-INED -

w-=4 CUSTOMER <. BORRAOW

......... A i
Icnmrr-cun o ACCOUNT ;_...'./u;m

6) ER Diagram for College management system

Hostel

@
Qs

7) ER Diagram for Online Book Store

@ address {@ @

@>_ author publzsher

@/@ =2

customer
@ =
book
| @ - basket—of
Gy \
M shopping-basket

\
: warehouse Cid_e_
number

ER Diagram for Online BookStore

TRANSFORM ER DIAGRAM INTO TABLES

There are various steps involved in converting it into tables and columns. Each type of

entity, attribute and relationship in the diagram takes their own depiction here. Consider the

ER diagram below and will see how it is converted into tables, columns and mappings.

A‘ /\\
(e)~)

(STUDENT NAME | ADORESS \ {\/.;’“—c\)
\\.,-/ ’/"\-:[\\‘ \.—/

(COURSE I©)

S

e TR n
LT D
/ _Z

&
C oo e) /\‘-\
v

" Qoness 0 "‘ | SL&'ECT-': ..|

The basic rule for converting the ER diagrams into tablesis

e Convert all the Entitiesin the diagram to tables.

All the entities represented in the rectangular box in the ER diagram become independent
tables in the database. In the below diagram, STUDENT, COURSE, LECTURER and
SUBJECTS forms individual tables.

e All singlevalued attributes of an entity is converted to a column of the table

All the attributes, whose value at any instance of time is unique, are considered as columns of
that table. In the STUDENT Entity, STUDENT _ID, STUDENT_NAME form the columns of
STUDENT table. Similarly, LECTURER _ID, LECTURER_NAME form the columns of
LECTURER table. And so on.

o Key attributein the ER diagram becomesthe Primary key of the table.

In diagram above, STUDENT _ID, LECTURER _ID, COURSE_ID and SUB_ID are the key
attributes of the entities. Hence we consider them as the primary keys of respective table.

o Declaretheforeign key column, if applicable.

In the diagram, attribute COURSE_ID in the STUDENT entity is from COURSE entity.
Hence add COURSE_ID in the STUDENT table and assign it foreign key constraint.
COURSE_ID and SUBJECT_ID in LECTURER table forms the foreign key column. Hence
by declaring the foreign key constraints, mapping between the tables are established.

e Any multi-valued attributes are converted into new table.

A hobby in the Student table is a multi-valued attribute. Any student can have any number of
hobbies. So we cannot represent multiple values in a single column of STUDENT table. We
need to Sore it separately, so that we can store any number of hobbies, adding/ removing /
deleting hobbies should not create any redundancy or anomalies in the system. Hence we
create a separate table STUD_HOBBY with STUDENT _ID and HOBBY as its columns. We
create a composite key using both the columns.

e Any composite attributes are merged into same table as different columns.

In the diagram above, Student Address is a composite attribute. It has Door#, Street, City,
State and Pin. These attributes are merged into STUDENT table as individual columns.

« Onecanignorederived attribute, sinceit can be calculated at any time.

Inthe STUDENT table, Age can be derived at any point of time by calculating the difference
between DateOfBirth and current date. Hence we need not create a column for this attribute.
It reduces the duplicity in the database.

—>These are the very basic rules of converting ER diagram into tables and columns, and
assigning the mapping between the tables. Table structure at this would be as below:

STUDENT LECTURER
STUDENT_ID LECTURER_ID
STUDENT_MAME LECTURER_MAME
o8 COURSE_ID
DOORE
STREET
CiTY
STATE 'T
PN COURSE
COURSE_ID - COURSE_ID

COURSE_NAME

STUD HOBBRY

. STUDENT 1D

HOBBY

RELATIONAL MODEL:
—->The Relational Database is a collection of one or more relations, where each relation is a
table with rows and columns.

—>The main construct for representing data in the relational model is a relation (table). A
relation consists of a relation schema and a relation instance. The relation instance is a
table, and the relation schema describes the column heads for the table.

- The schema specifies the relation’s name, the name of each field (or column, or attribute),
and the domain of each field. A domain is referred to in a relation schema by the domain
name and has a set of associated values.

Example of student information in a university database to illustrate the parts of a relation
schema:

Students(sid: string, name: string, login: string, age: integer, gpa: real)

The field named sid has a domain named string. The set of values associated with domain
string isthe set of all character strings.

Example2:

student (studentwName : string,

]' rol INumber : string,
/ phoneNumber ; Tnteger,
Relation vearorAdmission : Tnteger,
name b;*anchm@rudy : Erping)

\ |
Attribute domains
NaImes

Domain—set of atomic (or indivisible) values —data type

—~>An ingtance of a relation is a set of tuples, also called records, in which each tuple has
the same number of fields as the relation schema. A relation instance can be thought of as a
table in which each tuple isarow, and all rows have the same number of fields

An instance of the Students relation appearsin Figure 3.1.
The instance S1 contains six tuples and has, as we expect from the schema, five fields. Note

that no two rows are identical. This is a requirement of the relational model—each relation is
defined to be a set of unique tuples or rows.

FIFLDS (ATTRIBUTES, COLUMNS)

S

Fieldnames —2__, il

e fogin age | gpa
50000 | Dave | davefpes 19133
53666 | Jones | jonesiaes 18 | 34

TUPLES 53688 | Smith

smuithiiee

32

{RECORDS, ROWS} 33630 | Smuth

smuth{gmath

18

$3831 | Madayan

madayan@music

1]

14

53832 | Guldy

guldwmusic

12

20

Figure 3.1 An Instance 51 of the Students Relation

Cardinality = 3, degree = 5, all rows distinct.

->Domain constraints are so fundamental in the relational model that we will henceforth
consider only relation‘instances that satisfy them; therefore, relation instance means relation
instance that satisfies the domain constraints in the relation schema.

—>The degree, also called arity, of a relation is the number of fields. The cardinality of a
relation instance is the number of tuples init. In Figure 3.1, the degree of the relation (the
number of columns) isfive, and the cardinality of this instance is six.

—A relation schema specifies the domain of each field or column in the relation instance.
These domain_congtraints in the schema specify an important condition that we want each
instance of the relation to satisfy: The values that appear in a column must be drawn from the
domain associated with that column. Thus, the domain of afield is essentially the type of that
field, in programming language terms, and restricts the values that can appear in the field.

More formally, let B{ f,:DL. .., f:Dn] be a relation schewma, and for each f;, 1< i <n,
kt Dom; be the set of values associated with the domain named Di. An instance of R
that satishies the domain constraints In the schema is a set of tuples with n fields:

{l:flldl,_ ,fn!dn::l | dlEDmnl, ,%Eﬂmﬂn}

Another Example:

stif nare bogin age | gpe
23831 | Madayan | madayan®@musie | 11 1.5
53832 | Guldu guldu@music 12 | 2.0
3688 | Smith smithiZee 18 | 3.2
53650 | Smith smith@math 19 | 3.8
h3666 | Jones jones@es 18 | 3.4
50000 | Dave davefics 19 | 3.3

Figure 3.2 An Alternative Bepresentation of lnstance 51 of Stodents

A relational database is a collection of relations with distinct relation names. The
relational database schema is the collection of schemas for the relations in the database. For
example, University database with relations called Students, Faculty, Courses, Rooms,
Enrolled, Teaches, and Meets In. An instance of a relational database is a collection of
relation instances, one per relation schema in the database schema; of course, each relation
instance must satisfy the domain constraints in its schema.

Creating and M odifying RelationsUsing SOL -92:

The SQL-92 language standard uses the word table to denote relation. The subset of SQL that
supports the creation, deletion, and modification of tables is called the Data Definition
Language (DDL).

Domain Typesin SOL :
1. char (n):Fixed length character string, with user-specified length n.
2. varchar (n) (or) character varying):Variable length character strings, with user-
specified maximum length n.
3. intor integer: Aninteger (afinite subset of the integersthat is machine dependent).
4. gmallint:asmall integer (a machine-dependent subset of the integer
domain type).
5. numeric(p,d): Fixed point number, with user-specified precision of
pdigits, with n digits to the right of decimal point.
6. Real (or) double precision:Floating point and double-precision floating point
numbers, with machine-dependent precision.
7. float (n):Floating point number, with user-specified precision of at least n digits.
8. date: acalendar date, containing four digit year, month, and day of the month.
9. time: thetime of the day in hours, minutes, and seconds.

—->The CREATE TABLE statement is used to define a new table. To create the Students
relation, we can use the following statement:

CREATE TABLE Students { sid CHAR(20),
name CHAR({30),
login CHAR(20),
age INTEGER,
gpa REAL)

—>Tuples are inserted using the INSERT command. We can insert.a single tuple into the
Studentstable as follows:

INSERT
INTO Students (sid, name, login, age, gpa)
VALUES (53688, ‘Smith’, ‘smith@ee’, 18, 3.2)

->We can delete tuples using the DEL ETE command. We can delete all Students tuples with
name equal to Smith using the command:

DELETE
FROM Students 5
WHERE S.nmame = ‘Smith’

->We can modify the column values in an existing row using the UPDATE command. For
example, we can‘increment the age and decrement the gpa of the student with sid 53688:

UPDATE Students S
SET S.age = S.age + 1, S.gpa = S.gpa -1
WHERE 5S.sid = 53688

—->The WHERE clause is applied first and determines which rows are to be modified. The
SET clause then determines how these rows are to be modified.

consider the following variation of the previous query:

UPDATE Students 5
S.gpa = S.gpa - (L1
WHERE S.gpa >= 3.3

SET

—1f this query is applied on the instance S1 of Students shown in Figure 3.1, we obtain the
instance shown in Figure 3.3.

login

sid rane dage | gpa
50000 | Dave daveqncs 19 | 3.3
53666 | Jones Jonesi cs 18 34
33688 | Smith smithigiec 18 32
53650 | Smiih amithi@ math 19 3.8
53831 | Madayan | madayangmusic 11 1.8
53832 | Guldu guldug@music 12 2.0

Figure 3.1 An Instance 51 cof the Students Relation

sid nome login age | gpa
50000 | Dave dave@cs 19 | 3.2
83666 | Jones jonesdics 15 3.3
53628 | Smith smith@ee 15 3.2
23650 | Sinith sinith@math 19 3.7
53831 | Madayan | madayan@music | 11 i3
53832 | Guldu guldu@music 12 2.0

Figure 3.3 Students Inatance 51 after Update

2. INTEGRITY CONSTRAINTSOVER RELATIONS: (****)

An integrity constraint (IC) is a condition that ensures the correct insertion of the data and

prevents unauthorized data access thereby preserving the consistency of the data.

For example, the roll number of a student cannot be a decimal value. The database enforces
the constraint that the instance of roll number can have only integer values.

Integrity constraints are specified and enforced at different times:

1. When the DBA or end user defines a database schema, he or she specifies the I Cs that
must hold on any instance of this database.

2. When a database application is run, the DBMS checks for violations and disallows
changes to the data that violate the specified ICs.

There are three types of integrity constraints in addition to domain constraint. They are:
1. KeyConstraints
2, Foreign Key Constraints.
3. General Constraints.

1). KEY CONSTRAINTS:

—>A key constraint is a statement that a certain minimal subset of the fields of arelation isa
unique identifier for atuple.

—>Consider the Students relation and the constraint.that no two students have the same
student id. ThisIC is an example of akey constraint.

TYPES OF KEY CONSTRAINTS:

1. Candidate Key
2. Super key
3. Primary key
4. Foreign key
1. CANDIDATEKEY:
—>A candidate key is a collection of fields/columng/attributes that uniquely identifies atuple.

—>Let ustake acloser look at the above definition of a (candidate) key.
- There are two partsto the definition:

1. Two distinct tuples in a legal instance (an instance that satisfies all 1Cs, including the key
constraint) cannot have identical valuesin all the fields of a key.
2. No subset of the set of fields in akey isa unique identifier for atuple.

Example: In “customer” relation the attribute “cid” is a key, it uniquely defines a tuple in a
relation. No two rows in a relation “customer” can have the same “cid” value.

—>The set of atributes that form a candidate key need not be al keys. The attributes may be
treated as candidates to be taken as key.

Example: The set (cid, cname) is a candidate key which means either cid or cname can be
taken as key but not both. Each of them independently and uniquely identifies a particular
row. The alternate keys are candidate keys that are not taken as keys.

2. COMPOSITE KEY:

—>Composite key consist of more than one attribute that uniquely identifies a tuple in a
relation. All the attributes that form a set of keys and all of them taken together determines a
unique row in atable.

Example: The set (cid, accno) is a composite key which maintains the uniqueness of each
row. Both cid, accno are taken as keys.

3. SUPER KEY:
A super key is a combination of both candidate key and composite key. That is a set of
attributes or asingle attribute that uniquely identifies atuple in arelation.

Example: Consider the super key {cid, accno, cname}

Here, al the three attributes taken together can identify a particular record or a combination
of any two attributes can identify a particular record or any one of theattribute can identify a
particular record.

4. PRIMARY KEY:
Only a single attribute can uniquely identify a particular record. More specifically, it can be
defined as the candidate key, which has been selected as key to identify unique records.

Example: “cid” attribute in “customer” relation'can be treated as PRIMARY KEY.

- Summary of Key (With respect to “customers” relation)

1) Super key {cid, cname, accno}

2) Candidate key {cid, cname}

3) Composite key {cid, accno}

4) Primary key {cid}
Specifying Key Congtraintsin SQL -92:
—>In SQL, we_can eliminate the chances of inserting duplicate data by using a unique
constraint. This constraint helps the user to insert unique values for the columns which have

been declared as unique, forming a candidate key any one of the columns among them can be
declared as primary by using primary key constraints.

- Example; Consider the creation of “Students” table.

CREATE TABLE Students { sid CHAR(20),
name CHAR(30),
login EHAR{EW,

age [NTEGER,

gpa REAL,

UNIQUE {name, age),

CONSTRAINT StudentsKey PRIMARY KEY (sid) }

This example shows the creation of Students table with attributes sid, name;login, age, gpa,
unique key is used on columns name and age which ensures that the values inserted in these
columns are unique. The last line of declaration defines a primary key constraint.

- The syntax used for defining constraint is,

CONSTRAINT constraint-name PRIMARY KEY (key)
i.e.,, CONSTRAINT StudentsKey PRIMARY KEY (sid)

The line declares sid as primary key for Students relation. If the user inserts repeated
values for”sid” then error occurs and constraint-name is return indicating violation of
congtraint.

2). Foreign Key Constraintg(*******)

—>A foreign key (FK) is a column or combination of columns that is used to establish and
enforce a link.betweenthe data in two tables. You can create a foreign key by defining a
FOREIGN KEY.constraint when you create or modify atable.

—>In a foreign key reference, a link is created between two tables when the column or
columns*that hold the primary key value for one table are referenced by the column or
columns in another table. This column becomes a foreign key in the second table.

-> Suppose that in addition to Students, we have a second relation:

Enrolled (sid: string, cid: string, grade: string)

—>To ensure that only bona fide students can enroll in courses, any value that appears in the
sid field of an instance of the Enrolled relation should also appear in the sid field of some

tuple in the Students relation. The sid field of Enrolled is called a foreign key and refers to
Students. The foreign key in the referencing relation (Enrolled) must match the primary key

of the referenced relation (Students), i.e., it must have the same number of columns and
compatible data types, although the column names can be different.

—2This constraint is illustrated in Figure 3.4. As the figure shows, there may well be some
students who are not referenced from Enrolled (e.g., the student with sid =50000).

—~>However, every sidvalue that appears in the instance of the Enrolled table appears in the
primary key column of arow in the Studentstable.

—->A FOREIGN KEY constraint does not have to be linked only to a PRIMARY KEY
constraint in another table; it can also be defined to reference the columns of a UNIQUE
constraint in another table. A FOREIGN KEY constraint can contain null values; however, if
any column of a composite FOREIGN.

Forzign key Primary key

— —
ad grode| Sid w_jf— sid | rame fogin age | gpa
Camaticitl | C | 53831 50000 | Dave | davef@es 19 | 33
Reggac?03 | B |S3832|". o |53666|Jomes | jomesigics 18 | 34
Topology 1 A | 53507 {53688 |Smith | smithgee 18 | 32
Historyl0S | B | 536667 x:f?j* 53650 | Smith | smith@imath 19 | 3%
“\ﬂ‘ 3383 | Madayan | madavanigmusic | 11 | 1.8

“|53832 | Guldu | puldu@mesic | 12| 20

Enrolled {Referencing relation) Students {Referenced relstion)

Figure 3.4 Teferential Intesrity

Specifying Foreign Key Constraintsin SOL :

Let us define Enrolled! #id: string, cid: string, grode; string):

CREATE TABLE Enrolled { sid CHAR(20).

¢id CHAR{20},

grade CHAR{10},

PRIMARY KEY (sid, cid),

FOREIGN KEY (sif) REFERENCES Students)

The statement FOREIGN KEY (sd) REFERENCES Students means that the foreign key
sid uses primary id sid of employee relation as a reference. Every tuple with sid must match a
tuple in Students relation.

The foreign key constraint states that every sid value in Enrolled must also appear in
Students, that is, sid in Enrolled isaforeign key referencing Students.
3).General Constraints:

Domain, primary key, and foreign key constraints are considered to be a fundamental part of
the relational data model and are given special attention in:most. commercial systems.
Sometimes, however, it is necessary to specify more general constraints.

Example: we may require that student ages be within a certain range of values; given such an
|C specification, the DBMS will reject inserts and updates that violate the constraint. This is
very useful in preventing data entry errors. If we specify that all students must be at least 16
years old, then age are valid cases i.e., legal instance. Rest of all the others having lesser than
16 years are called as invalid casesi.e., illegal instance. Instance of Students shown in Figure
3.1 is illegal because two students are underage. If we disallow the insertion of these two
tuples, we have a legal instance, as shown in Figure 3.5.

sid name login age Tgpa
50000 | Dave dave(@cs 19 3.3
53666 | Jones jonesdes 18 3.4
53688 | Smith smith{@ee 18 3.2
53650 | Smith smith{@math 19 3.8
53831 | Madayan | madavan{@music 11 1.8
53832 | Guidu guldu@music 12 2.0

Figure 3.1 An Instance §1 of the Students Relation

sid name | login age | gpe

53666 | Jones | jones@cs 18 | 34
53688 | Smith | smith@ee 18 | 3.2
53650 | Smith | smith@math | 19 | 3.8

Figure 3.5 An Instance 52 of the Students Relation

—>The IC that sudents must be older than 16, is known as an.extended domain constraint,
because we are restricting age values more stringently (strictly), than by-simply using a
standard domain such as integer.

—>In general, constraints domain, primary and foreign key constraints can also specify the
maximum limit.
Example: we require a student whose age is greater than 18 must have a gpa greater than 3.

- There are two types of general congtraints. They are

1. Table Constraints:. These are applied on a particular table and are checked every table
whenever that specific table is updated.

2. Assertions: These assertions are applied on collection of tables and are checked every time
whenever theses tables are applied.

3. ENFORCING INTEGRITY CONSTRAINTS:

—>Integrity Constraints(IC) are the rules that when applied on relations restricts the
insertion of .incorrect data and also helps to prevent deletion and updating of consistent data
that may lead to loss of data integrity. And, therefore one should be very careful when
applying integrity constraints on relations.

The operations such as insertion, deletion and updating must be discarded if they are found to
violate integrity constraints. This section provides a brief on different violations of 1Cs and
also the solutions to handle these violations.

Consider the instance S1 of Students shown in Figure 3.1. The following insertion violates
the primary key constraint because there is already a tuple with the sid 53688, and it will be
rejected by the DBMS:

INSERT
INTO Students (sid, name, login, age, gpa)
VALUES (53688, ‘Mike’, ‘mike@ee’, 17, 3.4)

- The following insertion violates the constraint that the primary key cannot contain null:

INSERT
INTO Students (sid, name, login, age, gpa)
VALUES (null, ‘Mike’, ‘mike@ee’, 17, 3.4)

—>Deletion does not cause a violation of domain, primary key or.unique constraints.
—~>However, an update can cause violations, similar to an insertion:

UPDATE Students S
SET S.51d = 50000
WHERE S.sid = 53688

This update violates the primary key congtraint because there is already a tuple with sid

50000.

—>1n addition to the instance S1 of Students, consider the instance of Enrolled shown in
Figure 3.4. Deletions of Enrolled tuples do not violate referential integrity, but insertions of
Enrolled tuples could. The following insertion is illegal because there is no student with sid

51111:

INSERT

INTO Enrolled (cid, grade, sid)
VALUES (‘Hindil01’, ‘B’, 51111)

EXAMPLE:

CREATE TABLE Enrolled { sid CHAR(20),
cid CHAR(20),
grade CHAR(10).
PRIMARY KEY (sid, cid),
FOREIGN KEY (sid) REFERENCES Students
DN DELETE CASCADE
ON UPDATE NO ACTION)

—>This example explains the options when delete or update operation are performed. These
options are included as a part of foreign key declaration. No action is the default option'which
means both update and delete operations are rejected.

1) On Delete Cascade: Means when a row is deleted from Students relation, then all the
rowsreferred to this deleted row in Enrolled relation must also be deleted.

2) On Update Cascade: Means when updations are carried in-Students relation for the
primary key attribute then all these updations must also be carried out in Enrolled.
3) On Delete Set Default: Means when a row is deleted in Students, then that row in

Enrolled relation can be set to same default value.

4) On Delete Set Null: Means on deleting the row in Students the same row can be
assigned aNULL valueiin Enrolled relation.

NOTE: SQL even providesthe facility to delay the applications of constraints on relation and
also immediate application of constraints. This is possible with these two additional
congtraints,

1) Deferred'mode
2) Immediate mode

The syntax for this congtraint is,

SET CONSTRAINT Constraint-name DEFERRED
SET CONSTRAINT Constraint-name INNMEDIATE

—>Usually, constraints are checked at the end of SQL statements and if the constraints are
violated then the statements are rgjected. But with differed constraint, constraint checks are
postponed and are checked at the time of commit.

RELATIONAL ALGEBRA:

> Relational algebra is a procedura query language, which takes instances of relations as
input and yields instances of relations as output. It uses operators to perform queries. An
operator can be either unary or binary. They accept relations as their input and yield
relations as their output. Relational algebra is performed recursively on a relation and
intermediate results are also considered relations.

Example schemas:

Sailors (sid: integer, sname: string, rating: integer, age: real)
Boats (bid: integer, bname: string, color: string)

Reserves (sid: integer, bid: integer, day: date)

Example Instances:

R1 |sid |bid day
22 101 [10/10/96
58 103 11/12/96
Figure 4.1 InstanceS1 of Sailors
<z |sid snaime rating |age
A dustin 27 4 45.0
31 lubber =3 v S |
58 rusty 10 35.0
Figure 4.2 Instance S2 of Sailors
sz |sid |sname rating 'age
28 YUuppy o 25.0
51 lubber 8 -
4 suppy o 35.0
58 rusty 10 350

Figure 4.3 Instance R1 of Reserves
—>The “Sailors” and “Reserves” relations are our examples. We’ll use positional or named
field notation, assume that names of fields in query results are ‘inherited’ from names of

fields in query input relations.

->The fundamental operations of relational algebra are:

1. Basic operators:
a) Selection
b) Projection

2. Set Operations:
a) Union
b) Intersection
¢) Set-difference
d) Cross-product

3. Renaming
4. Joins
a) Condition joins
b) Equijoin
¢) Natural join
5. Division
6. Assigiment operation.

1. Selection and Projection:
—~>Relational algebra includes operators to select rows from a relation (o) and to project
columns (7). These operations allow us to manipulate data in a single relation.

Selection - 7 Selects a subset of rows from relation.
Projection- 7T Deletes unwanted columns from relation.

SELECTION (o):

The selection operation isaunary operation. This is used to find horizontal subset of relation
or tuples of relation.

It selectstuplesthat satisfy the given predicate from arelation. It is denoted by sigma(e).

Notation — op(r)

Where ¢ stands for selection predicate andr stands for relation. pis prepositional logic
formula which may use connectors like and, or, and not. These terms may use relational
operators like —=, #, >, <, >, <

Example: If you want all the Sailor s having rating mor e than 8 from instance S2 of Sailors.
The query is,

o (52)

rating > 8
Theresult isshown in Figure 4.4
sid STLAINE ratireg g€
28 YUppy 9 35.0)
58 Rusty 10 35.0

Figure 4.4 Tratirng =a(S2)

PROJECTION (7):

The projection operation is a unary operation which applies only on a single relation at a
time. Thisisused to select vertical subset of relation (i.e., columns of table)

It projects column(s) that satisfy a given predicate. It is denoted by pi (7).

Notation — [Ja1, A2, an ()
Where A1, Az, A, are attribute names of relationr.

Duplicate rows are automatically eliminated, as relation is a set.

Example: If you can find out all sailors names and ratings from instance S2 of Sailors. The
query is,

Tename,rating (SQ)

The result isshown in Figure 4.5

Sname rating

yuppy | 9
Lubber | 8
guppy | 9
Rusty 10

Figure 4.5 wsnume,rutiny(gzj

—> Suppose that we wanted to find out only the ages of sailors. The expression

Mage (F2)

evaluates to the relation shown in Figure 4.6.

e’
o |

] el

2

on

Figure 4.6 m,o5.-(52)

- For example, we can compute the names and ratings of highly rated sailors by
combining two of the preceding queries. The expression

Nesname,rating (grating,‘:hﬁ (82))

produces the result shown in Figure 4.7. It is obtained by applying the selection to S2 (to get
the relation shown in Figure 4.4) and then applying the projection.

sname | rating

yuppy | 9
Rusty | 10

Figul‘e 4.7 '?Tsname,rat-ing{ﬂ_ratiﬂg}ﬂ(gg}j

2. SET OPERATIONS:
The relational algebraic operations can be divided into basic set oriented operations (Union,
Intersection, Set difference and Cartesian product).

X r;__.nl_l_'_'-_'-_‘i-'l_l=_::'-_.'_|'_|__|| Allows us to combine two relations

P — Sef-difference luples are in relation. 1, but not in relation, 2,
U Lirion I |_l|l:_-:-\. are in relation. 1 or in relation, 2

m [nterssction Tuples are in relation, 1 and in relation. 2.

The UNION (V) Operation:

—~>RUS returns a relation instance containing all tuples that occur in either relation instance R
or relation instance S (or both). R and S must be union-compatible, and the schema of the
result is defined to be identical to the'schema of R.

Notation—-R U S

->Two relation instances are said to be union-compatible if the following conditions hold:

¢ ___They have the same number of the fields, and
e Corresponding fields, taken in order from left to right, have the same domains.
e Duplicate tuples are automatically eliminated.

Note that field names are not used in defining union-compatibility. For convenience, we will
assume that the fields of R U Sinherit names from R, if the fields of R have names.

—>The union of S1 and S2 is shown in Figure 4.8. Fields are listed in order; field names are
also inherited from S1. S2 has the same field names, of course, since it is also an instance of
Sailors. In general, fields of S2 may have different names; recall that we require only domains
to match. Note that the result is a set of tuples. Tuples that appear in both S1 and S2 appear

only oncein S1 U S2. Also, S1 U R1 is not avalid operation because the two relations are not
union-compatible.

sid |sname | rating |age
22 |dustin |7 45.0
31 |lubber |8 55.5
58 |rusty 10 35.0
44 |guppy |9 25.0
28 |yuppy |9 35.0

Figure4.8 S1uU S2

The INTERSECTION (N) Operation:
—->RNS returns a relation instance containing all tuples that oceur in both R and S. The

relations R and S must be union-compatible, andthe schema of the result is defined to be
identical to the schema of R.

Notation—R N S

If the relations contain nothing as common then the result will be an empty relation. Rules of
set union operations are also applicable here.

—>The intersection of S1 and S2 is shown in Figure 4.9.

sid |sname rating |age
31 lubber 8 DD
58 rusty 10 39.0

Figure 4.951N S2

The SET-DIFFERENCE (-) Operation:

—->R-S returns a relation instance containing all tuples that occur in R but not in S. The

relations R and S must be union-compatible, and the schema of the result is defined to be
identical to the schema of R.

The result of set difference operation is tuples, which are present in one relation but are not
in the second relation. It removes the common tuples of two relations and produces a new
relation having rest of the tuples of first relation.

Notation —R—S

-> It finds all the tuples that are present in R but not in S.

- The set-difference S1 — S2 is shown in Figure 4.10.

sid |sname ':rating 'age
22 |dustin |7 45.0

Figure 4.10S1- S2

The CROSS-PRODUCT (x) Operation:

—->R XS returns a relation instance whose schema contains all the fields.of R (in the same
order as they appear in R) followed by all the fields of S (in the same order asthey appear in
S). The result of R x S contains one tuple hr, si (the concatenation of tuplesr and s) for each
pair of tuplesr € R, s € S. The cross-product operation is-sometimes called Cartesian
product.

—->We will use the convention that the fields of R x S inherit names from the corresponding
fieldsof Rand S. It is possible for both R and S to contain one or more fields having the same
name; this situation creates a naming conflict. The'corresponding fields in R x S are unnamed
and are referred to solely by position.

- |t combines information of two different relations into one.

Notation —R X S

—>The result of the cross-product S1 x R1 is shown in Figure 4.11. Because R1 and S1 both
have a field named sid, by our convention on field names, the corresponding two fields in S1
x R1 are unnamed, and referred to solely by the position in which they appear in Figure 4.11.
The fields in S1 x R1 have the same domains as the corresponding fields in R1 and S1. In
Figure 4.11sd islisted in parentheses to emphasize that it is not an inherited field name; only
the corresponding domain is inherited.

(sid) sname rating lage |(sid) bid day
22 |dustin | 7 45.0 | 22 101 [10/10/96
22 |dustin | 7 |45.0 | 58 (103 |11/12/96
31 |lubber | 8 [555 | 22 |101 |10/10/96
31 [lubber | & [555 | 58 |103 [11/12/96
58 rusty 10 350 | 22 |101 |10/10/96
58 rusty 10 |35.0 [58 |103 |11/12/96

Figure4.11S1 x R1

3. Renaming (p); (¥***%%%*)

The rename (p) operation is a unary operation which is used to give names to relational
algebra expressions.

The results of relational algebra are also relations but without any name. The rename
operation allows us to rename the output relation. ‘Rename’ operation is denoted with small
Greek letter rho p.

Suppose, you want to find Cartesian product of a relation with itself then by using rename
operator we give an alias name to that relation. Now, you can easily multiply that relation
withitsalias. It is helpful in removing ambiguity.

Notation — p x (E)

—~>Where the result of expression E is saved with name of x.

For example, the expression p(C (1 — sidl, 5 — sid2), S1 x R1) returns a relation that
contains the tuples shown in Figure 4.11 and has the following schema:

C (sidl:-integer, sname: string, rating: integer, age: real, sd2: integer, bid: integer, day:
dates).

4- JOlnS: (********)
The join operation is one of the most useful operations in relational algebra and is the most
commonly used way to combine information from two or more relations.

The join operation denoted by “join” or “>4”, is a relational algebra operation, which is used to combine (join)
two rdations like Catesan-produat but findly removes duplicate dtributes (same column to only one
column) and mekes the operations (selection, projection etc.,) very smple. In Smple words we can say thet
join connectsrdations on columns containing comparable informetion.

There are three types of joins. Namely, they are

1. Condition Joins
2. Equi Join and
3. Natural join.

1. Condition Joins:

—>The most general version of the join operation accepts a join condition ¢ and a pair of
relation instances as arguments, and returns a relation instance. The join condition is identical
to a selection condition in form. The operation is defined as follows:

R .8 = o {(RxS5)

Thus is defined to be a cross-product followed by-a selection. Note that the condition ¢ can
(and typically does) refer to attributes of both.R and S. The reference to an attribute of a
relation, say R, can be by position (of the form R.1) or-by name (of the form R.name).

- Example: the result of Sl Slsi di&s]:qu@(ﬂiﬁ]e 4.12. Because
sid appears in both S1 and R1, the corresponding fields in the result of the cross-product S1 x
R1 (and therefore in the result

of Sle< Slsid«Rlsid FQl-are unnamed. Domains are inherited from the
corresponding fields 0?81 and R1.

sid) ‘sname _rating 'age (sid) [bid 'daja
2 dustn |7 450 58 103 |11/12/%
31 [lubber § 125.5 8 (103 [11/12/9%

Figure4.12 Sl Sl.sicd =< Rl.sick Rl

* Result schemasame as that of cross-product.
» Fewer tuples than cross-product, might be able to compute more efficiently
« Sometimes called atheta-join.

2.Equijoin:
- It isagpecial case of condition join where the condition ¢ contains only equalities.

—Equijoin is same as condition join, the only difference is that, equijoin uses equity ‘=’
operator to join the two relations.

The schema of the result of an equijoin contains the fields of R (with the same names and
domains as in R) followed by the fields of S that do not appear in the join conditions. If this
set of fields in the result relation includes two fields that inherit the same name from R and S,
they are unnamed in the result relation.

We illustrate Sl g gid=5.25d 1
only one field called sid appears in the result.

in Figure 4.13. Notice that

sid | sname | rating | age | bid | day

22 | Dustin | 7 45.0 | 101 | 10/10/96

58 | Rusty | 10 35.0 | 103 | 11/12/96

Figure 4.13 51 <p zig=5 4id 1

—~>Result schemasimilar to-cross-product, but only one copy of fields for which equality is
specified.

3. Natural Join:
—“>Natural join does not use any comparison operator. It does not concatenate the way a

Cartesian‘product does. We can perform a Natural Join only if there is at least one common
attribute that exists between two relations. In addition, the attributes must have the same
name and-domain.

—~>Natural-join acts on those matching attributes where the values of attributes in both the
relations are same.

-> Special case of the join operation R S is an equijoin in which equalities are specified on
al fields having the same name in R and S. In this case, we can simply omit the join
condition; the default is that the join condition is a collection of equalities on all common
fields. This special case a natural join, and with this result is guaranteed not to have two
fields with the same name.

The equijoin expression Sl Mg sid=5.5id 121 is actually a natural

join and can simply be denoted as S1xR1, since the only common field is sid. If the two
relations have no attributes in common, S1 «R1 is simply the cross-product.

sid) sname [rating age (sid) (bid day
0 dustin 7400 58 {105 11/12/9
31 [lubber § 125.5 8 (103 [11/12/9%

Figure.S1xR1

5. Division:
—>The division operator is useful for expressing certain kinds of queries that include the
phrase “for all’. It is denoted by (/). It is alike the inverse of Cartesian product.

Consider two relation instances A and Buin which A has (exactly) two fields x and y and B
has just one field y, with the same domain as in A. We define the division operation A/B as
the set of all x values (in the form of unary tuples) such that for every y value in (a tuple of)
B, thereisatuple<x, y>in A.

Another way to understand division is as follows. For each x value in (the first column of) A,
consider the set of y valuesthat appear in (the second field of) tuples of A with that x value. If
this set contains (all y valuesin) B, the x value is in the result of A/B.

An analogy with.integer division may also help to understand division. For integers A and B,
A/B is the largest integer Q such that Q * B < A. For relation instances A and B, A/B isthe
largest relation instance Q such that Q x B € A.

Divisionisillustrated.in Figure 4.14.

A e | PrRo Bl mo
st | pl pl
sl | p2
sl | p3 B | pro
sl | pd p2
s2 | pl o
2 | pl T
2
st | pd P

p2
pd

Figure 4.14 Examples|llustrating Division

A/B2

SHO

5]

53

SHO

5]

Sio

g]

sid | sname | rating | age sid | bed | day

N [Dustin |7 |40 22 [101 | 10710738
2 [Brutws |1 | 330 22 [102 | 10/10/%
31 | Lubber | § h.) 2 [103 [10/8/98
32 | Andy |8 |25 22 | 104 | 10/7/%8
W |Ruwsty |10 [350 31 { 102 [11/10/98
64 | Horatlo | 7 3.0 31 [103 | L1/6/08
71 [Zotha |10 [160 U [104 | 13/12/98
74 | Horatlo | 4 35 64 | 101 | 9/5/98
8 (At |3 25.5 64 | 102 | 9/8/%
9% |Bob |3 63.5 7d [105 | 9/8/08
Figure 415 An Instance 53 of Sailors Figure 416 An Instance R2 of Beserves

bd | brome | color

101 | [nterlake | blue
102 | Interlake | red

103 | Clipper | green
1M | Marine | redt

Figure 4.17 An Instance B of Boals

1. Basic SOL,Query:

—>Structured Query Language (SQL) is the most widely used commercial relational database
language. It was originally developed a IBM in the SEQUEL-XRM and System-R projects
(1974-1977).

The SOL language has several aspectsto it:

1. The Data Definition Language (DDL): This subset of SQL supports the creation, deletion,
and modification of definitions for tables and views. Integrity constraints can be defined on
tables, either when the table is created or later. The DDL also provides commands for specifying
access rights or privileges to tables and views. Although the standard does not discuss indexes,
commercial implementations also provide commands for creating and deleting indexes.

2. The Data M anipulation L anguage (DML): This subset of SQL allows users to pose queries
and to insert, delete, and modify rows.

3. Embedded and dynamic SOL : Embedded SQL features allow SQL code to be called from a
host language such as C or COBOL. Dynamic SQL features allow a query to.be constructed (and
executed) a run-time.

4. Triggers. The new SQL:1999 standard includes support for-triggers, which are actions
executed by the DBMS whenever changes to the database meet conditions specified in the
trigger.

5. Security: SQL provides mechanisms to control users’ access to data objects such as tables and
views.

6. Transaction management: Various commands allow a user to explicitly control aspects of
how atransaction is to be executed.

7. Client-server execution and remote database access: These commands control how a client
application program can connect to an SQL database server, or access data from a database over a
network.

2. THE FORM OF A BASIC SOL QUERY:
—->The basic form of an-SQL query is as follows:

SELECT [DISTINCT | select-list
FROM from-list
WHERE qualification

2>Such a query intuitively corresponds to a relational algebra expression involving
selections, projections, and cross-products.

—~>Every query must have a SELECT clause, which specifies columns to be retained in the
result, and a FROM clause, which specifies a cross-product of tables. The optional WHERE
clause specifies selection conditions on the tables mentioned in the FROM clause.

sid | sname | uiing | age sed | bad | day
22 | Dmstin | T 4. 22] 101 | 10/10/98
29 | Brutus | 1 33.0 22 | 102 | 10,/10,/95
31 | Lubber | 8 39.0 22] 103 | 10/8/08
3?2 | Andy | 8 5.0 22 | 164 | 10,/7/08
8 | Rusty 10 3o U102 | 1198
fd | Horatio | 7 3.0 31 | 103 | 11/6/98
71 | Zotha [10 16.00 A1] 164 | 11/12/98
74 | Hovatio | © 5.0 04 | 101 | &/5/98
Bo | Art 3 20,0 64 | 102 | 9/8/08
93 | Bob 3 R 74 | 103 | 9/8/98
Figore 5.1 An lostanes 83 af Sailors Figure 5.2 An Instanee B2 of Rewerve
bid | bname color

101 | Interfake | hiue
102 | Interiake | red

i03 | Clipper | green
104 | Marine | red

Figoure 5.3 Awn Instance 81 of Boats

e The from-list'in the FROM clause is a list of table names. A table name can be followed
by a range variable; a range variable is particularly useful when the same table name
appears more than once in the from-list.

e The select-list isalist of (expressions involving) column names of tables named in the
from-list. Column names can be prefixed by arange variable.

e The qualification in the WHERE clause is a Boolean combination (i.e., an expression
using the logical connectives AND, OR, and NOT) of conditions of the form expression
op expression, where op is one of the comparison operators {<=, =, <>, >=, >}. 2 An
expression is a column name, a constant, or an (arithmetic or string) expression.

e TheDISTINCT keyword is optional. It indicates that the table computed as an answer to
this query should not contain duplicates, that is, two copies of the same row. The default
isthat duplicates are not eliminated.

SELECT Clause:
—>Let us consider asimple query:

(Q15) Find the names and ages of all sailors.

SELECT DISTINCT S.Sllame, S.age
FROM Sailors S

—>The answer is a set of rows, each of which is a pair <sname, age>. If two or more sailors
have the same name and age, the answer ill contains just one pair with that name and age.
This query is equivalent to applying the projection operator of relational algebra.

—>The answer to this query with and without the keyword DISTINCT on instance S3 of
Sailors is shown in Figures 5.4 and 5.5. The only difference is that the tuple for Horatio
appearstwice if DISTINCT is omitted; this is because there are two sailors called Horatio and
age 35

SMame | age
snonte | oge [Dustin | 45.0 |
Dhistin | 45.0 Brutus | 33.0
Brutus | 330 Lubber | 55.5
Lubber | 5h.0 Andy 2530
Andy 255 Rusty | 35.0
Rusty | 350 Horatio | 35.0
Horatio | 35.0 forha 16.0
Zorin 16.0 Horatio | 35.0
Art 20.0 Art 200
Bob B30 Boh 3.5
Figure 5.4 Answer to Q105 Figure 5.5 Answer ta Q15 without DIETIRCT

(Q11)-Find all sailorswith arating above 7.

SELECT S.sid, S.sname, S.rating, S.age
FROM Sailors AS S
WHERE S.rating > 7

- This query uses the optional keyword AS to introduce a range variable. Incidentally, when
we want to retrieve all columns, as in this query, SQL provides convenient shorthand: We can
simply write SELECT *. This notation is useful for interactive querying, but it is poor style
for queries that are intended to be reused and maintained.

Conceptual evaluation strategy:
1. Compute the cross-product of the tables in the from-list.
2. Delete those rows in the cross-product that fail the qualification conditions.

3. Delete all columns that do not appear in the select-list.
4. 1f DISTINCT is specified, eliminate duplicate rows.

We illustrate the conceptual evaluation strategy using the following query:
(Q1) Find the names of sailorswho have reserved boat number 103.

It can be expressed in SQL as follows.
SELECT S.snaine

FROM Sailors 8, Reserves R
WHERE S.sid = R.sid AND R.bid=103
sul | sname | rebtng | age
s | bid | day 22 | dustin | 7 45.)
22 | 101 | 10/10/96 31 | lubber | & 0h.b
o8 | 108 | 11/12/96 B8 | rusty | 10 35.0

Figure 5.6 Instance B3 of Reserves Figure 5.7 Instance 54 of Sailors
—>Thefirst step isto construct the cross-product $4 x R3, which is shown in Figure 5.8.

sid | sname | vating | age | sid | bid | day

22 | dustin | 7 45.0 | 22 | 101 | 18/10/96
22 | dustin | 7 45.0 | 58 | 103 | 11/12/486
31 | lubber | B 55.5 | 22 | 101 | 16/10/96
31 | lubber | B 55.5 | 58 | 103 | 11/12/96
& | rusty | 10 35.0 | 22 | 101 | 10/10/96
58 | rusty | 10 35.0 | 58 | 103 | 11/12/96

Figure 5.8 54 » RS

—>The second step is to apply the qualification S.sid = R.sid AND R.bid=103. This step
eliminates all but the last row from the instance shown in Figure 5.8.

—>The third step is to eliminate unwanted columns; only sname appears in the SELECT
clause. This step leaves us with the result shown in Figure 5.9, which is a table with a single
column and, as it happens, just one row.

STHEFTLE

rusty

Figure 5.8 Answer to Query Q1 on 3 and 54

Examples of Basic SOL Queries:

(Q16) Find thesids of sailorswho havereserved ared boat.
SELECT R.sid
FROM Boats B, Reserves R
WHERE B.bid = R.bid AND B.color = ‘red’

(Q2) Find the names of sailorswho have reserved ared.boat.

SELECT S.sname
FROM Sailors 5, Reserves R, Boats B
WHERE S.sid = R.sid AND R.bid = B.bid AND B .color = ‘red’

(Q3) Find the colorsof boats reserved by Lubber.

SELECT Bcolor
FROM Sajlors 5, Reserves R, Boats B
WHERE S5.s5id = R.sid AND R.hid = B.hid AND S.sname = ‘Lubber’

(Q4) Find the names of sailorswho havereserved at least one boat.

SELECT S.sname
FROM Sailors 5, Reserves R
WHERE S.sid = R.osid

Expressions and Stringsin the SEL ECT Command:

(Q17) Compute increments for the ratings of persons who have sailed two different
boats on the same day.

SELECT S.sname, S.rating+1 AS rating
FROM Sailors S5, Rescrves RI, Rescerves R2
WHERE S.sid = Rl.sid AND S.sid = R2.sid
AND Rl.day = R2.day 4ND R1.bid <> R2.bid

—>Also, each item in aqualification can be as general as expressionl = expression2.

SELECT 51.sname AS namel, 52.sname AS name?
FROM Sailors 81, Sailors 52
WHERE 2*S1.rating = S2.rating-1

(Q18) Find the ages of sailorswhose name begins and ends with B and hasat least three
characters.

SELECT S5S.age
FROM Sailors 5
WHERE S.sname LIKE ‘B_FHEB°

The only such sailor is Bob, and his age 13 63.5.

3. UNION, INTERSECT, AND EXCEPT:

—>The UNION operation combines two relations and automatically eliminates the duplicate
tuples.

—->The INTERSECT operation finds the common tuples of two relations and eliminates the
duplicate tuples.

—->The EXCEPT operation finds the tuples which are in one relation but not in the other
relation and automatically eliminates duplicate tuples.

(Q5) Find the names of sailorswho havereserved ared or a green boat.

SELECT S.shame
FROM Sailors S, Reserves R, Boats B
WHERE S.sid = R.sid AND R.bid = B.bid
AND (B.color = ‘red’ OR B.color = ‘green’)

2>The OR query (Query Q5) can berewritten asfollows:

SELECT S.sname

FROM Sallors 5, Heserves R, Boats I3

WHERE S.sid = R.std AND R.bid = B.bid AND B.color = ‘red’

TNICH

SELECT 52.sname

FROM Sailors 52, Boats B2, Reserves R2

WHERE 52.sd = R2.s0d AD R2.bad = B2.bid AND B2.color = ‘green’

(Q6) Find the names of sailors who have reserved both a red and a green boat.

SELECT S.sname
FROM Sailors 5, Reserves B, Boats Bl, Beserves B2, Boats B2
WHERE S.sid = Rl.gld AND Rl.Lid = BEl.hid

AND Ssid = R2.51d AND R2.bid = B2.bad

AND Bl.color='red’ AND BZ.color = ‘green’

-2 AND query (Query Q6) can berewritten asfollows:

SELECT S.sname

FROM Sailors S, Reserves R, Boats B

WHERE S.sid = H.sid AND R.bid = B.bid 88D B.color = ‘red’
INTERSECT

SELECT S2.sname

FROM Sailors 52, Boats B2, Rescrvos B2

WHERE 52.5id = R2.5id AND R2.hid = IB32.bid AND BZ.color = “green’

(Q19) Find thesids of all sailorswho have reserved red boats but not green boats.

SELECT S.sid

FRO¥ Sailors 5, Reserves R, Boats B

WHERE S.sid = R.sid AND R.bhid = B.bid AKD B.color = 'red’
EXCEPT

SELECT $2.sid

FROX Sailors 82, Reserves R2, Boats B2

WHERE 32.5id = R2.sid AND R2.bid = B2.bid AND B2.color = ‘preen’

SELECT R.sid

FROM Boats B, Reserves R

WHERE FE.hid = B.hid AND B.color = ‘rod’
EXCEFPT

SELECT R.2.=id

FROM Boats B2, Bescrves R2

WHERE RZ2.hid = B2.bid AND B2.color = ‘green’

(Q20) Find all sds of sailorswho have arating of 10 or have reserved boat 104.
SELECT 5S_sid

FROM mailors &=
WHERE S.rating — 10
TTWIOAON

SELLECT HR.=id

FROM Reserves R
WHERFE R.Ihid = 10D

4. NESTED QUERIES:

Introduction to Nested Queries:

(Q1) Find the names of sailorswho have reserved boat 103.
SELECT S.sname

FROM Sailorg 5

WHERE S.sid IN { SELECT R.sid
FROM Reserves R
WHERE R.bid = 103)

(Q2) Find the names of sailorswho have reserved ared boat.

SELECT S.sname
FROM Sailors S
WHERE S.sid IN { SELECT R.sid
FROM Reserves R
WHERE R.bid IN¥ (SELECT B.bid
FRO¥ Doats B
WHERE B.color = ‘red’)

(Q21) Find the names of sailorswho have not reserved ared boat.

SELECT S.sname
FROM Sailors §
WHERE S.sid NOT IN { SELECT R.sid
FROM Reserves R
WHERE R.bid IN { SELECT B.bid

FRON DBoats B
WHERE B.color = ‘red’)

Correlated Nested Queries:

(Q1) Find the names of sailorswho have reserved boat number 103.

SELECT S5.sname
FROM Sailors 5
WHERE EXISTS (SELECT *
FROM Reserves E,
WHERE H.bid = 103
AND R.sid = S.sid)

Set-Comparison Operators:
(Q22) Find sailorswhose rating is better than some sailor called Horatio.

SELECT S.sid
FROM Sailors §
WHERE S.rating > ANY { SELECT S52.rating
FROM Sailors 52
WHERE S2.sname = ‘Horatio’)

(Q23) Find sailorswhose rating is better than every sailor called Horatio:

—~>We can obtain all such queries with a simple modification to Query Q22: just replace ANY
with ALL in the WHERE clause of the outer query.

(Q24) Find the sailorswith the highest rating.

SELECT S5.sid

FROM Sailors 8

WHERE S.rating >>= ALL { SELECT S2.rating
FROM Sailors §2)

M ore Examples of Nested Queries:

(Q6) Find the names of sailorswho havereserved both ared and a green boat.

SELECT B.sname

FROM Sallors 5, Reserves R, Boats BB

WHERE S.uid = R.=id AND R-bid = B.hid AKD B.color = fred’

AND 5.5id IN { SELECT $2.sid
FROM Sailors 52, Boatks B2, Beserves B2
WHERE 52.sid = R2.sid AND R2.id = B2.bid
AND B2.color = ‘grecnn’)

SELECT S3.sname
FR{OM Sallors 53
WHERE $3.sid IN ({ SELECT R.sid
FROK Boats B, Beserves R
WHERE H.hid = B.Dbid AND B.color = ‘red’ }
INTERSECT
(SELECT R2.sid
FROM Boats B2, Heserves T2
WHERE RZ.hid = BZ.lad AND B2 .color = ‘green’ })

(Q9) Find the names of sailorswho have reserved all boats.

SELECT 5.sname

FROM Sailors 5

WHERE NDOT EXISTS ({ SELECT B.bid
FROM BoatsB)
EXCEPT
(SELECT R.bid
FROM Reserves R
WHERE R.sid = S.sid })

SELECT S.sname
FROM Sailors S
WHERE NOT EXISTS { SELECT B.hid
FROM Boats B
WHERE NOT EXISTS (SELECT R.hid
FROM Reserves R

WHERE R.bid = B.bid
AND R.sid = S.sid })

5. AGGREGATE OPERATORS:

—>Aggregate functions operate on a multiset of values and return a single value. Typical
aggregate functions are min, max, sum, count, and avg.

- These features represent a significant extension of relational algebra.
- SQL supports five aggregate operations, which can be applied on any column, say A, of a
relation:

1. COUNT ([DISTINCT] A): The number of (unique) valuesinthe A column.
2. SUM ([DISTINCT] A): The sum of all (unique) values in the A column.

3. AVG ([DISTINCT] A): The average of all (unique) valuesin the A column.
4. MAX (A): The maximum value in the A column.

5. MIN (A): The minimum value in the A column.

Examples:

(Q25) Find the average age of all sailors

SELECT AVG {(S.age)
FRIOM Sailors S5

On instance S3, the average age is 37.4.

(Q26) Find the average age of sailorswith arating of 10.

SELECT AVG (S.age)
FROM Sailors 5
WHERE S.rating = 10

There are two such sailors, and their average age is 25.5. MIN (or MAX) can be used instead

of AV G in the above queries to find the age of the youngest (oldest) sailor.
(Q27) Find the name and age of the oldest sailor.

Consider the following attempt to answer this query:

SELECT S.snamc, MAX (S.age)
FROM Sailors 5

SELECT S.sname, S.age

FROM Sailors 5

WHERE S.age = (SELECT MAX (S2.age)
FROM Sailors 82)

SELECT S.2natnc, S.asc

FROM =ailorms S

WHERE (SELECT MAX {(SZ.age)
FROM Sailors 52 } = S.age

(Q28) Count the number of sailors.

SELECT COUNT (¥)
FROM Sailors §

(Q29) Count the number of different sailor names.

SELECT COUNT {DISTIHCT S.sname)
FROM Sailors §

(Q30) Find the names of sailorswho are older than the oldest sailor with arating of 10.

SELECT 5.snamc

FROM Bailors 5

WHERE S.age > { SELECT MAX { S2.age)
FROM Sallors 52
WHERE S2.rating = 10)

SELECT S.sname

FROM Sailors 5

WHERE S.age > ALL (SELECT S2.ape
FROM Sallors 52
WHERE S52.rating = 10)

The GROUP BY and HAVING Clauses:

—>Group by clause is used to group the results of a SELECT query based on one or more
columns. It isalso used with SQL functions to group the result from one or more tables.

- Syntax for using Group by clause is as follows,

SELECT [DISTINCT | select-list
FROM from-list

WHERFE. qualification

GROUP BY grouping-list

HAVING group-qualification

The select-list in the SELECT clause consists of (1) alist of column names and (2) alist
of terms having the form aggop (column-name) AS new-name. The optional AS new-
name term gives this column a name in the table that is the result of the query. Any of the
aggregation operators can be used for aggop.

Every column that appears in (1) must also appear in grouping-list. The reason is that
each row in the result of the query corresponds to one group, which is a collectionof rows
that agree on the values of columns in grouping-list. If a column appears in list (1), but
not in grouping-list, it is not clear what value should be assigned to it in an answer row.

The expressions appearing in the group-qualification in the HAVING clause must have a
single value per group. The intuition is that the HAVING clause determines whether an
answer row is to be generated for a given group. Therefore, @ column appearing in the
group-quaification must appear as the argument to an aggregation operator, or it must
also appear in grouping-list.

If the GROUP BY clause is omitted, the entire table isregarded as a single group.

For example, consider the following query-:

(Q31) Find the age of the youngest sailor for each rating level.

SELECT S.rating, MIN (S.age)
FROM Sailors S
GROUP BY S.rating

(Q32) Find the age of the youngest sailor who is eligible to vote (i.e,, is at least 18 years
old) for-each rating level with at least two such sailors.

SELECT S.rating, MIN (S.age) AS minage
FROM Sailors 5

WHERE S.age »>= 18

GROUP BY S.rating

HAVING COUNT (*) > 1

sid | sname rating | age

22 IDastin ri 45.0
29 Brutus 1 33.0
31 Lubber o] 55.5
32 Andy 8 25.5
58 Rusty 10 350
64 Horatiao | 7 35.0
71 Zorba 10 16.0)
Td Horatio | 9 35.00
85 Art 3 25.5
05 Bob 3 (3.5

Figure 5.10 Instance 53 of Sallors

retieg | oge
T 4.0 3 5 5
- 20 I
- - ;: 7 15.0
i 3.0 7 3.0
7 KUAL s 335
9 0 4 230
3 355 ElET
3 6d.5 10 35.0
Figura 5.11 Altor Evnluation Step 3 Figure 5.11 After Bwlustion Step 4

Taftag | rriniage

3 25.5

7 30 .1)

& 25.5

Figure 5.13 Fineael RHesult in Sample Evaluation
M ore Examples of Agaregate Queries:

(Q33) For each red boat, find thenumber of reservationsfor thisboat.

SELECT B.bid, COUNT (*) AS sallorcount
FROM Boats B, Reserves R

WHERE R.bid = B.bid AND B.cclor = ‘red’
GROUFP BY B.hid

SELECT B bid, couNT (*) A sailorconnt

FROM Boata B, Reserviesa R
WHEERE R _bid = B_bid
GHOUFP BY BE.bid

HAVING B.color = ‘red?

(Q34) Find the average age of sailorsfor each rating level that hasat least two sailors.
SELECT S.rating, AVG {(S.age) AS avmape
FROM Sailors 5
GROUF BY 5S.rating
HAVING COUNT {*) = 1

SELECT S.rating, AVG (S3.age) AS avgage
FROM Sailors B
GROUP BY S.rating
HAVING 1 < (SELECT COUNT (*)
FROM BSailors 52
WHERE S.rating = S2.rating)

—>After identifying groups based on rating, we retain only groups with at least two sailors.
The answer to this query on instance S3 is shown in Figure 5.14.

Figura 5,14 ()34 Answer

(Q35) Find the average age of sailorswho are of voting age (i.e., at least 18 yearsold) for

Figure 5.15 35 Answer

each rating level that has at least two sailors.

roimg | Gupsge reting | figage

REE 3| 465 iing | augage
{ 00 i 40.0 3 15.5
§ 0.5 8 0.5 7 0.0
10 |55 0 [0 § 0.5

Figure 5.16 ()3 Answer

SELECT S.rating, 4VG (S.age) AS avgage
FROM Sailors 5
WHERE 3. age »>= 18

GROUP BY S.rating
HAVING 1 < (SELECT COUNT (¥)
FROM Sailors 52
WHERE S.rating = S2.rating)

(Q36) Find the average age of sailorswho are of voting age (i.e, at least 18 yearsold) for
each rating level-that has at least two such sailors.

SELECT S.rating, AVG { S.age) AS avgage
FROM Sailors 5
WHERE S, age > 18
GROUP BY S.rating
HAVING 1 < (SELECT COUNT (*)
FROM Sailors 52
WHERE S.rating = S2.rating AND 52.age >= 18)

EERELECT Sratlnwys, AVG ([B age) AS v
FRIOM =Soaillora =

WHERE . ape —= 18
GROUPR BY S.ratinngs
HAWV LHG COLIWT (YY) = 1L

SELECT Teenp.rating, TErmps garptoes

FROM { SBELECT S.rating, AVG { J.age) AS aveage,
COUNT {*) AS tatingconnl
FROM Snilurs 5
WHERE 8. apee = 1R

GRONTP BY S_rating) AS Temp
WHERE Ternp ratingoonnt = 1

(Q37) Find those ratings for which the average age of sailors is the minimum overall
ratings.

SELECT o.rating

FROM Sailors 5

WHERE AVG (S.age) = { SELECT MIN (AVG (S2.age)}
FROM Sailors 52
GROUP BY SZ.rating }

SELECT Temporating. Tempavgsge
FROM { SELECT S.rating, AVG (S.age} AS avisge,
FRIM Baifors 3
GROUP BY S.rating) AS Temp
VHERE Tomp.aveage = { SELECT KIN [Temp.avesge] FRON Tenp |

The answer to this query on invtance 53 18 (10, 25.3).

As an exerrige. the reader should consider whether the following guety compirtes the
same atswer, and il net, why:

SELEST Tetup.cating, KIR { Tetop.avgape)
FROM | SELECT S.rating, AYG [S.age) AS avpape,
FROM Sutlors §
GROGP BY S.rating | AS Temp
GROUP BY Temp.reting
5. NULL VALUES:

—>The SQL NULL isthe term used to represent a missing value. A NULL value in atable is
avalue in afield that appearsto be blank.

—>A field withaNULL value is afield with no value. It is very important to understand that a
NULL value is different than a zero value or afield that contains spaces.

- The basic syntax of NULL while creating a table:

SQL> CTREATETABLE CUSTOMERS (

I INT NOTNULL,
NAME VARCHAR= (20) NOTNULL,
AGE INT NOTNULL,
ADDEESS CHARI(=25),
SATARY DECIMATL (18, =),

PRIMARY KEY (ID)
)

—>Here, NOT NULL signifies that column should always accept an explicit value of the
given data type. There are two columns, where we did not use NOT NULL, which means
these columns could be NULL.

—>A field withaNULL value is one that has been left blank during record creation.

Example:

The NULL value can cause problems when selecting data, however, —>because when
comparing an unknown value to any other value, the result is always unknown and not
included in the final results.

—2>You must use thelS NULL or IS NOT NULL operators in order to check for a NULL
value.

—>Consider the following table, CUSTOMERS having the following records:

1D NAME AGE ADDRESS SALARY
1 ANUPAMA 52 Ahmadabad 2000.00
2 ABEELA 49 Delhi 1500.00
3 RANIA a5 Kota 2000.00
4 KAVYA 47 Mumbai 6500.00
5 NAGINA 41 Bhopal 8500.00
6 NAJAH 48 Jaipur
rd RAMEESHA 50 Indore

—~>Now, following isthe usage of ISNOT NULL operator:

SQL>SELECTID, NAME, AGE, ADDRESS, SALARY
FROM CUSTOMERS
WHERESALARY ISNOT NULL;

->Thiswould produce the following result:

ID NAME AGE ADDRESS SALARY
1 ANUPAMA 52 Ahmadabad 2000.00
2 ABEELA 49 Delhi 1500.00
3 RANIA 45 Kota 2000.00
4 KAVYA 47 Mumbai 6500.00
5 NAGINA 41 Bhopal 8500.00

—~>Now, following isthe usage of ISNULL operator:

SQL>SELECT ID, NAME, AGE, ADDRESS, SALARY
FROM CUSTOMERS
WHERESALARYIS NULL:

—>Thiswould produce the following result:

ID NAME AGE ADDRESS SALARY
6 NAJAH 48 Jaipur
7 RAMEESHA 50 Indore

1. Comparison Using Null Values

—>It is difficult to perform comparison of valid values with NULL values if two valued Logic
TRUE or FAL SE. is used. Therefore to avoid this issue three valued logic TRUE, FAL SE or
UNKNOWN must be used with NULL value.

—>Consider a comparison such as rating = 8. If this is applied to the row for Dan, is this
condition' TRUE or FAL SE? Since Dan’s rating is UNKNOWN, it is reasonable to say that
this comparison should evaluate to the value UNKNOWN. In fact, this is the case for the
comparisons rating > 8 and rating < 8 as well. If we compare two null values using <, <, =,
<> and so on, the result is always UNKNOWN.

—>For example, if we have null in two distinct rows of the sailor relation, any comparison
returns UNKNOWN.

->SQL provides a special comparison operator IS NULL to test whether a column value is
null; for example, we can say rating 1S NULL, which would evaluate to TRUE on the row
representing Dan. We can also say rating IS NOT NULL, which would evaluate to FAL SE
on the row for Dan.

2. Logical Connectives AND, OR, and NOT:
—>Logical connectives with NULL values must be defined using three valued logic wherein
expressions evaluates to three values (i.e., to TRUE, FAL SE, or UNKNOWN).

—>Now, the Boolean expressions such asrating = 8 OR age< 40 and rating = 8 AND age<
40. Considering the row for Danage < 40, the first expression evaluates to TRUE the value
of rating; the second can only say UNKNOWN.

—>The given table will give you a better understanding of logical operators when used with
NULL values. Point to note here is that we are usng a three valued logic TRUE, FAL SE or
UNKNOWN i.e, the logical condition applied may evaluate to any one of them
(UNKNOWN isused in case of NULL values).

5. Mol Operation Hoesualt Reason
1} Mand ¥ TRLIE If broth X and Y are THUE
FALSE If cither X or ¥ i3 FALSE

[LTRCFATT If either X or Y 15 UTNENOWN

(HLUILL vadues)
a) AL E TELE If efthier of them (X oY 118 TRUE
EALETL If Leatlh of e are FALSE

LUNENOWM If ge of he aaguments i3 FALSE
and other is UNENOWN

3} MNCYL M TRUE IfX is FALSE
FALSE If X i5s TRELIE
EINEMNOWR I X i LTHER W

Talle. Logical Operators
3. Impact on SOL Constructs:
—>As many Boolean expressions are used in SQL, it is necessary to understand the impact of
NULL values on these constructs.

STUDENT Iy 5TD NAME CCUEEE 1D CLASS GROUP
1 A 1061 2 B8
F. H 1oz 3 H
3 C i3 3 B
4 D 104 4 B
b E 1035 i H
f F 104 3 E
T G 167 L B

Table. Student Table

2 Example:

List all names of students who belongs to group ‘B’

SELECT *
FROM STUDENT S
WHERES.group = ‘B’;

—>This solution will result in the set of tuples that satisfies the “‘WHERE’ condition and all
other tuples that does not satisfy this condition are ignored in addition to these tuples. Tuples
with NULL values are also ignored because for them the condition evaluates to FAL SE or
UNKNOWN. This elimination of rows that resulted unknown, makes the queries that
involves EXISTS and/or UNIQUE much more simple, easy to understand and makes the
evaluation of these queries (nested queries especially) much easier.

—>We know that the comparison of any two fields with NULL values for eguality is an
UNKNOWN value. But when it comes to (=) equality operator, the two NULL" value
attributes are treated as equal. If a field contains two NULL values then that is considered as
duplicate values. Two tuples are said to be duplicates if they hold the same value or if they
hold NULL values. So, the comparison of NULL values with'the “=" operator always results
in TRUE.

—>The result of all the arithmetic operators (+, -, %, /, *) results in an UNKNOWN value
(NULL) if any one of the argument is a NULL value. Similarly; with all the aggregate
operators the result is NULL if these operators are applied a NULL value. Aggregate
functions simply delete the NULL values and-then returns the result of aggregate operators
i.e, SUM, AVG, MIN, MAX, COUNT(DISTICT) i.e, simply delete/ignore the NULL
values and returns the result of other NOT NULL tuples. Only exception in aggregate
operator is COUNT (*) which does net ignore/delete the NULL values, it counts them and
then return the number of tuples in the table.

4. Outa- JOInS (*************)

—~>We need to use outer joins to include all the tuples from the participating relations in the
resulting relation.

—>This is the special case of “join” operator which considers the NULL values. Generally
“join” operations performs the cross product of two tables and apply certain join condition.
Then it selects those rows from the cross product that satisfied the given condition. But with
outer joins, DBMS allows to us select those rows which are common (satisfies the given) and
even those rows that does not satisfies the given condition.

—>To understand this, consider simple instances of Project and Department as shown in
table.

DEPARTMENT D1 PROJECT P1
Dept_id Dept_mno|Project_no/Project mnoProject_name
100001 16 111 444 K
100002 4 222 111 N
100003 14 333 222 R

TABLE . Intances of PROJECT and DEPARTMENT Table.

—>1f we perform join operation on these two tables,
SELECT *D1,*P1

FROM

WHERE D21.Project_no = P1.Project_no;
->The result of this statement is shown in Table 1«

DEPARTMENT D1, PROJECT P1

Dept_id Dept_no| Project_no|Project_noProject_name
100001 16 111 111 N
100002 4 222 222 R

TABLE 1. Table Showing the Simple Join Operation.

—>The Table 1 shows the simple join operation of two tables, only those rows are selected
that satisfied the condition. However, if we want to include those rows that do not satisfy the

condition, then we can use the concept of OUTER JOINS.

> Therearethree types of OUTER JOINS. They are,

1. LEFT OUTER JOIN
2, RIGHT OUTER JOIN
3. FULLOUTER JOIN

1. LEFT OUTER JOIN:

—->LEFT OUTER JOIN lists all those rows which are common to both the tables and also all
those unmatched rows of the table which is specified at the left hand side.

Example:

SELECT *D1,*P1
FROM DEPARTMENT D1 LEFT OUTER JOIN PROJECT P1
WHERE D1.Project_no = P1.Project_no;

—->The result of this statement is shown in Table 1A.

DEFARTMENT IM1 FEOJECT Py
Dept_id [(Dept noiProjectnoProject oo L’mhﬁ_nnm g
A0O0L it il 11t N
1OHD0Z] 23z ona R
10003 i -1 333 NULL NULL

TABLE 1A. Tsahle Showing the LEFT OUTER JOIN Operation.

->S0, the LEFT OUTER JOIN resulted in relations that have common rows from both the
tables and also the row which. does not have match in the other table. The values of the
attributes corresponding to second table are NUL L values.

2. RIGHT OUTER JOIN:

“2>RIGHT OUTER JOIN issameasthe LEFT OUTER JOIN but the only difference isthe
unmatched rows-of second table (specified on the right hand side) are listed along with the
common rowsof both the tables.

SELECT *D1,*P1

FROM ~ DEPARTMENT D1 RIGHT OUTER JOIN PROJECT P1

WHERE D1.Project_ no= P1.Project_no;

- The result. of this statement is shown in Table 2B.

DEPARTMENT D1 PROJECT P1

Dept_id |Dept_no|Project_no/Project_no[Project_name

NULL NULL NULL 444 K
100001 16 111 111 N
100002 4 222 222 R

TABLE 2B. Table Showing the RIGHT OUTERJOIN.
->The values of attributes for the first table are declared as NUL L.

3. FULL OUTER JOIN:

->FULL OUTER JOIN issame asthe RIGHT OUTER JOIN and LEFT OUTER JOIN
but only difference is unmatched rows of both tables are listed along with the common rows
of the tables.

SELECT *D1,*P1
FROM DEPARTMENT D1 FULL OUTER JOIN PROJECT P1
WHERE D21.Project_no= P1.Project _no;

->The result of this statement is shown in Table 2C.

DEPARTMENT D1 PROJECT P1

Dept_id |Dept_no|Project_no/Project_noProject_name|
100001 16 111 111 N
100002 4 222 222 R

100003 14 333 NULL NULL
NULL NULL NULL 444 K

TABLE 3C. Table Showing the FULLOUTERJOIN.

—>In this relation as you can see all the matched and unmatched columns of both the tables
are displayed, the values for the unmatched attributes are entered as NUL L.

5. Disallowing Null Values:

—>These fields can take on NULL values, if they are not declared as NOT NULL. We can
restrict the insertion of NUL L values for the field by declaring that field as NOT NULL. This
means that the field cannot take NULL values. For the PRIMARY KEY Constraint i.e., the
field which isdeclared as PRIMARY KEY isalso declared as NOT NULL. Thisdeclaration
isimplicit declaration done by DBMS.

CREATE TABLE STUDENT (Sid INT NOT NULL,
Sname CHAR(10) NOT NULL
Project VARCHAR2 (15),
Class INT,
PRIMARY KEY(Sid));

—>In this declaration i.e., creation of STUDENT Table, Sid isthe PRIMARY KEY hence it
must be UNIQUE and it should not be NULL. Project field indicates the Project taken up by
the student . This field can take NULL valuesasit is possible

6. EmbeddedSOL : (F*****x%kxxkkxx*)

—->SQL provides a powerful declarative query language. Writing queries in SQL is usually
much easier than coding the same queries in a general - purpose programming language.
However, a programmer must have access to a database from a general purpose programming
language for at least two reasons:

e Not al queries can be expressed in SQL, since SQL does not provide the full expressive
power of a general-purpose language. That is, there exist queries that can be expressed in
a language such as C, Java, or COBOL that cannot be expressed in SQL. To write such
queries, we can embed SQL within a more powerful language.

e Non-declarative actions—such as printing a report, interacting with a user, or.sending the
results of a query to a graphical user interface—cannot be done from within SQL.
Applications usually have several components, and querying or updating data is only one
component; other components are written in general-purpose programming. languages.
For an integrated application, the programs written in the programming language must be
able to access the database.

1. Declaring Variables and Exceptions:

—>The SQL standard defines embeddings of SQL in a variety of programming languages such
asC, Java, and COBOL.

—>A language to which SQL queries are embedded isreferred to as a host language, and the
SQL structures permitted in the host language comprise embedded SQL.

—->SQL statements can refer to variables defined in the'host program. Such host-language
variables must be prefixed by a colon (:) in SQL statements and must be declared between the
commands EXEC SQL BEGIN DECLARE SECTION and EXEC SQL END DECLARE
SECTION. The declarations are similar to how they would look in a C program and, as usual
in C, are separated by semicolons,

—~>For_example, we can declare variables ¢_sname, ¢ sid, ¢ rating, and c_age (with the
initial ¢ used as a naming convention to emphasize that these are host language variables) as
follows:

EXEC SQL BEGIN DECLARE SECTION
char c_snarne]20];

long o_sid;

short c_ratirng;

flocat c.age;

EXEC SQL END LECLARE SECTION

2. Embedding SOL Statements:

—>All SQL statements that are embedded within a host program must be clearly marked, with
the details dependent on the host language; in C, SQL statements must be pre- fixed by
EXEC SQL. An SQL statement can essentially appear in any place in the host language
program where a host language statement can appear.

—>As a simple example, the following embedded SQL statement inserts a row, whose
column values are based on the values of the host language variables contained in it, into the
Sailorsrelation:

EXEC SGL INSERT INTD Sailors VALUES (:r_sname, :cstd, :crating, cage):

—>The SQLSTATE variable should be checked for errors and exceptions after each
embedded SQL statement. SQL provides the WHENEVER command to simplify this
tedious task:

EXEC SQL WHENEVER | SQLERROR | KOT FOUND | [CONTINUE | GOTG stmt |

—->The intent is that after each embedded SQL statement is executed, the value of
SQLSTATE should be checked. If SQLERROR is specified and the value of SQLSTATE
indicates an exception, control is transferred to stmt, which_is presumably responsible for
error/exception handling. Control is also transferred to ssmt if NOT FOUND s specified and
the value of SQL STATE is 02000, which denotes NO DATA.

7. Dvnam'c SQL (****************)

—>The dynamic SQL component of SQL alows programs to construct and submit SQL
gueries at runtime.

—>Using dynamic SQL, programs can create SQL queries as strings at run time (perhaps
based oninput from the user) and can either have them executed immediately or have they
prepared for subsequent use. Preparing a dynamic SQL statement compiles it, and subsequent
uses of the prepared statement use the compiled.version.

- SQL defines standards for-embedding dynamic SQL calls in a host language, such as C, as
in the following example.

Char * sqlprog = " update account set balance = balance=1.05
where account number =?”

EXEC SQL PREPARE dynprog from: sqlprog;

Char account [10] ="A-101";

EXEC SQL EXECUTE dynprog using: account;

- The dynamic SQL program contains a? which is a place holder for a value that is provided
when the SQL program is executed?

8. CURSORS (************)

—->A major problem in embedding SQL statements in a host language like C is that an
impedance mismatch occurs because SQL operates on sets of records, whereas languages like
C do not cleanly support a set-of-records abstraction. The solution is to essentially provide a
mechanism that allows us to retrieve rows one at a time from a relation. This mechanism is
called acursor.

—A cursor isatemporary work area created in the system memory when a SQL statement is
executed. A cursor contains information on a select satement and the rows of data accessed
by it.

—>This temporary work area is used to dstore the data retrieved from the database, and
manipulate this data. A cursor can hold more than one row, but can process only one row at a
time. The set of rowsthe cursor holds is called the active set.

—~>We can declare a cursor on any relation or on any SQL query (because every query returns
a set of rows).

—->Once a cursor is declared, we can open it (which positions the cursor just before the first
row); fetch the next row; move the cursor (to the next row, to the row after the next n, to the
first row, or to the previous row, etc., by specifying additional parameters for the FETCH
command); or close the cursor.

1. Basic Cursor Definition and Usage:

- Cursors enable us to examine in the host language program a collection of rows computed

by an embedded SQL statement:

e We usually need to open a cursor if the embedded statement isa SELECT (i.e., aquery)..

e |INSERT, DELETE, and UPDATE statements typically don’t require a cursor, although
some variants of DELETE and UPDATE do use a cursor.

—>As an example, we can find the name and age of a sailor, specified by assigning a value
to the host variable c_sid as follows:

EXEC S(L SELECT S.spame, S.age
THNTA IC_NYAITIE, TC_Age
FROM Sailars 5
WHERE 5S.sid = :c_sid;
—->The INTO-clause alows us to assign the columns of the single answer row to the host
variables c.snameand c_age.

- Computes the names and ages of all sailors with a rating greater than the current value of
the host variable ¢_minrating?

SELECT S.sname, S5.age
FROM Sailors 5
WHERE S.rating = c_minrating

—>This query returns a collection of rows, not just one row. The solution isto use a cursor:

DECLARE sinfo CURSOR FOR
SELECT S.sname, S.age

FROM Sailors S

WHERE S.rating > :c_minrating;

—>This code can be included in a C program, and once it is executed, the cursor sinfo is
defined. Subsequently, we can open the cursor:

OPEN sinfo;

- We can use the FETCH command to read the first row of cur sorsinfo into hos lanquage
variables:

FETCH sinfo INTO :c_sname, :c_age;

->When we are done with a cursor, we can close it:

CLOSE sinfo;

2. Properties of Cursors:
->The general form of a cursor declaration.s:

DECLARE cursormame [INSENSITIVE| [SCROLL] CURSOR FOR
SOTRE QUETY
[ORDER BY order-item-list]
| FOR READ DNLY | FOR UPDATE |

- A cursor can be declared to be a read-only cursor (FOR READ ONLY) or, if it isa
cursor on.a base relation or an updatable view, to be an updatable cursor (FOR UPDATE).
—>I1f it is updatable, simple variants of the UPDATE and DELETE commands allow us to
update or delete the row on which the cursor is positioned.

—>For example, if sinfo is an updatable cursor and is open, we can execute the following
statement:

UPDATE Sailors S
SET S.rating = S.rating - 1
WHERF. CURRENT of sinfo:

- Thisembedded SQL statement modifies the rating value of the row currently pointed to by
cursor sinfo; similarly, we can delete this row by executing the next statement:

DELETE Sailors S
WHERE CURRENT of sinfo;

—>A cursor is updatable by default unless it is a scrollable or insensitive cursor, in which
case it isread-only by default.

—>1f the keyword SCROLL is specified, the cursor is scrollable, which means that variants of
the FETCH command can be used to position the cursor in very flexible ways; otherwise,
only the basic FETCH command, which retrieves the next row, is allowed

—1f the keyword INSENSITIVE is specified, the cursor behaves as if it“is ranging over a
private copy of the collection of answer rows.

—>For_example, while we are fetching rows using the sinfo cursor, we might modify rating
values in Sailor rows by concurrently executing the command:

UPDATE Sailors S
SET S.rating = S.rating - 1

—>The order-item-list is a list of order-items; an order-item is a column name, optionally
followed by one of the keywords ASC or DESC.

—> Suppose that a cursor is opened on this query, with the clause:

ORDER BY minage ASC, rating DESC

The answer is sorted first in‘ascending order by minage, and if several rows have the same
minage value, these rows are sorted further in descending order by rating. The cursor would
fetch the rowsin the order shown in Figure 5.18.

roling Linagge
5 2.5
3 25.5
T 35.4

Figure 5.18 Order In which Tuples Are Fewchod

9. COMPLEX INTEGRITY CONSTRAINTSIN SOL:
Integrity constraints need not only be applied on single columns, they can also be applied on
single table or group of tables (called assertions).

Constraintsover a Single Table:
We can specify complex constraints over a single table using table constraints, which have

the form CHECK conditional-expression. For example, to ensure that rating must be an
integer in the range 1 to 10, we could use:

CREATE TABLE Sailors { sid INTEZER,
spame CHAR(10),
rating INTEGER,
age REAL,
PRIMARY KEY (sid),
CHECK (rating >= 1 AND rating <= 10 })
To enforce the constraint that |nterlake boats cannot be reserved, we could use:
CREATE TABLE Reserves { sid INTEGER,
hidd INTEGER,
day DATE,
FOREIGK KEY (sid) REFERENCES Sailors
FORELGN KEY (bid} REFERENCES Doats
CONSTRAINT nolnterlakeRes
CHECK ['Interlake’ <>
[BELECT B.bname
FROM Poats B
WHERE B.hid = Reserves.bid)}]

When a row is inserted into Reserves or an existing row is modified, the conditional
expression in the CHECK constraint is evaluated: If it evaluates to false, the command is
rejected.

Domain Constraints. (*¥*x*****x*kxkx)
—A user can define a new domain using the CREATE DOMAIN statement, which makes use
of CHECK constraints,

- The syntax for creating a new domain is,

CREATE DOMAIN Domain_name Source domain (DEFAULT
value) CHECK (VALUE)

CREATE DOMAIN: A statement or keyword used to define a new domain.

Domain_name : Name of the new domain.

Source_domain: Name of the source domain from which new domain is derived.

DEFAULT value: We can also provide default values for the domains.

CHECK: This option is used to restrict the values in the particular field (for which a new
domain is specified). This option provides a condition that must be checked by all the tuples
of the column.

VALUE: The key word is used to provide a value to a domain variable.

Example:

CREATE DOMAIN ratingval INTEGER DEFAULT 0
CHECK. { VALDE >= 1 AND VALUE <= 10)

INTEGER is the base type for the domain ratingval, and every ratingval value must be of
thistype. Valuesin ratingval are further restricted by using a CHECK constraint; in defining
this constraint, we use the keyword VAL UE to refer to avalue in the domain.

Assertions: ICsover Several Tables:

—>Assertions are group of tables on which a constraint is applied. Unlike table constraints
which are applied on single table, assertions are applied on multiple tables.

Example:
As an example, suppose that we wish to enforce the constraint that the number of boats plus
the number of sailors should be less than 100. Wecould try the following table constraint:

(REATE TABLE Sailors { sid TNTEGER,

sname CHAR(10),

rating INTEGER,

ape REAL,

PRIMARY KEY (sid),

CHECK { rating >=1 AND rating <= 10)

CHECK { { SELECT COUNT (S.sid) FROM Sailors S)
+ (SELECT COUNT {B.bid) FROM Boats B)
<100)

—>This solution suffers from two drawbacks. It is associated with Sailors, although it
involves Boats in a completely symmetric way. More important, if the Sailors table is empty,
this congtraint is defined (as per the semantics of table congtraints) to always hold, even if we
have more than 100 rows in Boats! We could extend this constraint specification to check
that Sailors is nonempty, but this approach becomes very cumbersome. The best solution isto
create an assertion, asfollows:

CREATE ASSERTION smallClub

CHECK {(SELECT COUNT (S.sid) FROM Sailors S)
+ { SELECT COUNT {B.bid) FROM Boats B)
< 100)

10. TRIGGERS AND ACTIVE DATABASES: (*****)

—A trigger is a procedure that is automatically invoked by the DBMS in.response to
specified changes to the database, and is typically specified by the DBA.

—>A database that has a set of associated triggers is called an active database.

—A trigger description contains three parts:

1. Event
2. Condition
3. Action

1. Event: A change to the database that activates the trigger.
—>Event describes the modifications done to the database which lead to the activation of
trigger. The following are fall under the category of events,
i) Inserting, updating, deleting columns of -the tables or rows of tables may activate the
trigger.
ii) Creating, altering or dropping any database object may also lead to activation of
triggers.
iii)An error message or user log-on or log-off may also activate the trigger.
2. Condition: A query or test that is runwhen the trigger is activated.
—>Conditions are used to specify. whether the particular action must be performed or not. If
the condition is evaluated to true then the respective action is taken otherwise the action is
rejected.
3. Action: A procedure that is executed when the trigger is activated and its condition is
true.

- The examples shown.in Figure 5.19

—>The trigger called init_count initializes a counter variable before every execution of an
INSERT statement that adds tuples to the Students relation.

—>The trigger called incr_count increments the counter for each inserted tuple that satisfies
the condition age < 18.

CREATE TRIGGER init conmt BEFORE INSERT G Students /* Bvent */
DECLARE

count INTEGER,
BRETH f* Action */
comnt, 2= [}
EXD
CREAE TRIGGER iucr.count AFTER INSERT O Students 1* Event *

VHEN {new.age < 18) {* Condition: ‘new’ s just-inserted tuple *f

FOR EACH R

BEEIR {* Action; a procedure in Cracle's PL/SOL syt ¥/
count ;= count + 1;

ERD

Figire 519 Exaroples Rhustrating Trggers

—->A row-level trigger is activated for each modified record, a statement-level trigger is
activated only once per INSERT command.

Advantages of trigger:
1) Triggers can be used as an alternative method for implementing referential integrity

constraints.

2) By using triggers, business rules and transactions are easy to store in database and can be
used consistently even if there are future updates to the database.

3) It controls on which updates are allowed in a database.
4) When a change happens in a database atrigger can adjust the change to the entire database.

5) Triggers are used for calling stored procedures.

10. DESIGNING ACTIVE DATABASES:

—>Active database contains a set of triggers and therefore it becomes quite difficult to
maintain active database.

—>What triggers are activated in what order can be hard to understand because a statement
can activate more than one trigger and the action of one trigger can activate other triggers.

Why Triggers Can BeHard to Understand:

—>1n an active database system, when the DBMS is about to execute a statement that modifies
the database, it checks whether some trigger is activated by the statement. If so, the DBMS
processes the trigger by evaluating its condition part, and then (if the condition evaluates to
true) executing its action part.

—>|f astatement activates more than one trigger, the DBMS typically processes all of them, in
some arbitrary order. The execution of this action part of a trigger may in turn activate
another trigger. In particular, the execution of the action part of atrigger could again activate
the same trigger; such triggers are called recursive triggers. The potential for such chain
activations, and the unpredictable order in which a DBMS processes activated triggers, can
make it difficult to understand the effect of a collection of triggers.

Constraintsversus Triggers.
—>Triggers are more flexible than integrity constraints and the potential uses of triggers go
beyond maintaining database integrity.
—>Triggers are used to maintain the data integrity in the database. Whenever a change
(update, insert or delete) is done in a database, a trigger can be used to indicate that change.
There are several uses of triggers.

e To maintain dataintegrity.

e Toidentity the unusual eventsthat occursin a database.

e For security checks and also for auditing.

UNIT IV

—>A schema can be defined as a complete description of database. The specifications for
database schema are provided during the database design stage and this schema does not
change frequently.

—>Schema Refinement is a technique of organizing the data in the database. Itis a
systematic approach of decomposing tables to eiminate data redundancy and undesirable
characteristics like Insertion, Update and Deletion Anomalies.

- Schema refinement is the process that re-defines (refining) the schema of a relation so as
to solve the problems caused by redundantly storing the information.

—~>Redundancy refers to repetition of same data or duplicate copies of same data stored in
different locations.

—>The Schema Refinement refers to refine the schema by using some technique. The best
technique of schema refinement is decomposition.

—->Decomposition can eliminate the redundancy.

1. Problems Caused by Redundancy :((*********+*%)

—>Redundancy is a data organization issue. It allows unnecessary duplication of data to be
stored within the database. If modifications are performed to redundant data, then it is
necessary to perform the same modification in multiple fields of database.

—>Storing the same information redundantly, that -is, “in-more than one place within a
database, can lead to several problems:

1. Redundant storage.
2. Update anomalies.
3. Insertion anomalies.
4. Deletion anomalies.

-> Schema diagram for Employee database is as follows,
2> Example:

Employvee Emp_id, Emp_name, Emp_section_id, Job_section, grade.

Emp_id | Emp_ nameEmp_section_id|Job_section grade
100001 | ANUPAMA 111 CLERK D
100002 | RAMEESHA 222 Secretary B
100002 | RAMEESHA 222 Secretary B
100002 | RAMEESHA 222 Secretary B
100003 | NAGINA 222 MANAGER | A
100001 | ANUPAMA 111 CLERK D
100004 KAVYA 444 Asst.Managery C

TABLE. An Instance of the Employee relation.

-> Consider the above database table. The three tuples with Emp_id100002 and two tuples
with Emp_id100001 repeat the same name and same job section information. The repetition
wastes space as well as causes data inconsistency i.e., this redundant data may lead to |oss of

data integrity.

—~>For example, some update operation is being carried out, entering new record for an
employee with id 100002. This must be done multiple time i.e., it must be done for each file
witch stores the employees details. This leads to redundant storage i.e., the same information

is stored multiple times.

1. Redundant storage: Some information is stored repeatedly.

2. Update anomalies. If one copy of such repeated data is updated, an inconsistency is

created unless all copies are similarly updated.

—1f the update operation is performed, for example, the Emp_section_id 268 is updated to
520 and this correction is made only to the first record of the database, then this may lead to
inconsistent data unless all the copies in the database are updated. This is referred to as
update anomalies. The changes must be done to all the copies of data.

3. Insertion anomalies. It may not be possible to store some information unless some other
information is stored as well.

—>For example, if a new employee record is being entered, who has not yet assigned an
Emp_id, now if we assume that the null values are not allowed, then it impossible to enter the
new record unless the new employee has been assigned an Emp_id. This is called insertion
anomalies.

4. Deletion_anomalies: It may not be possible to delete some information without losing
some other information as well.

—>For example, if we want to delete the grade entries where grade is/equal to ‘A’ then all the
information of Emp_section_id 268 will be deleted/loss.

2. Use of Decompositions:

—~>Decomposion is the solution to the problem caused by data redundancy. Decomposition
means breaking up the large schema into smaller multiple Schemas. Decomposition helps to
remove all the anomalies and helps to maintain data.integrity.

—>We can restrict redundancy in Employee database by dividing it into two smaller
relations/Schemas as in tablelR and Table2R.

—->Now we can easily update Emp_section_id in the Schema Section without bothering
about the updations in the other tuples. To insert a new tuple, we can directly insert the new
record in the Schema section (With the help of Emp_section-id) even if the new employee
has not yet been assigned the Emp_id. To delete the entry with the grade equal to ‘A’, we
can do it directly on the Section schema which does not lead to loss of other information.
Thus, decomposioneliminates the Problems caused by different anomalies

Emp id| Emp name Job_section grade
100001 | ANUPAMA CLERK D
100002 | RAMEESHA Secretary B
100002 | RAMEESHA Secretary B
100002 | RAMEESHA Secretary B
100003 NAGINA MANAGER A
100001 | ANUPAMA CLERK D

100004 KAVYA Asst.Manager C

TABLE1R. An Instance of the Employee relation.

Emp_section_id| grade
100001 D
100002 B
100003 A
100004 C

TABLE 2R. An Instance of the Section Relation

Functional Dependency

The functional dependency is a relationship that exists between two attributes. It typically
exists between the primary key and non-key attribute within atable.

. X - Y

The left side of FD is known as a determinant, the right side of the production is known as a
dependent.

For example:
Assume we have an employee table with attributes: Emp_ld, Emp_Name, Emp_Address.

Here Emp_Id attribute can uniquely identify the Emp_Name attribute of employee table
because if we know the Emp_ld, we can tell that employee name associated with it.

Functional dependency can be written as:

. Emp_Id — Emp_Name

We can say that Emp_Name is functionally dependent on Emp_|Id.

Types of Functional dependency

Functional

Dependency
Trivial Non-trivial
Functional Functional
Dependency Dependency

1. Trivial functional dependency

o A — B has trivial functional dependency if B is a subset of A.

o Thefollowing dependencies are also trivial like: A — A, B — B

Example:

Consider atable with two columns Employee Id and Employee Name.

{Employee_id, Employee Name} — Employee Idisatrivial functional dependency as
Employee |d isasubset of { Employee _|d, Employee Name}.

Also, Employee |d — Employee |d and Employee Name — Employee Name are trivial
dependencies too.

A w D P

2. Non-trivial functional dependency
o A — B has a non-trivial functional dependency if B is not a subset of A.
o When A intersection B is NULL, then A — B is called as complete non-trivial.

Example:

ID — Name,
Name — DOB

Inference Rule (IR):

o The Armstrong's axioms are the basic inference rule.

o Armstrong's axioms are used to conclude functional dependencies on a relational
database.

o The inference rule is a type of assertion. It can apply to a set of FD(functional
dependency) to derive other FD.

o Using the inference rule, we can derive additional functional dependency from the
initial set.

The Functional dependency has 6 types of inference rule:

1. Reflexive Rule (IR1)

Inthe reflexive rule, if Y isasubset of X, then X determines Y.
1. fX2YthenX —» Y

Example:

1. X={abcd e
2. Y={abc}

2. Augmentation Rule (IR>)

The augmentation is also called as a partial dependency. In augmentation, if X determinesY,
then XZ determines Y Z for any Z.

IfX — YthenXZ — YZ

Example:

. For R(ABCD), if A — BthenAC — BC

3. Transitive Rule (IR3)

In the transitive rule, if X determinesY and Y determine Z, then X must also determine Z.

IfX - YandY — ZthenX — Z

4. Union Rule (IR4)

Union rule says, if X determines’Y and X determines Z, then X must also determine Y and Z.

IfX —> YadX — ZthenX — YZ
Pr oof:

—
—

1 X Y (given)
2. X Z (given)
3. X — XY (using IRzon 1 by augmentation with X. Where XX = X)
4, XY — YZ “(using” IRon 2 by augmentation with YY)
5. X — YZ (using’IRg on 3 and 4)

5. Decomposition Rule (IRs)
Decomposition rule is also known as project rule. It isthe reverse of union rule.

This Rule says, if X determines Y and Z, then X determines Y and X determines Z
separately.

fX - YZthehX — YadX —» Z
Pr oof:
X — YZ (given)

1.
2. YZ — Y (using IR1 Rule)
3. X — Y (using IRz on 1 and 2)

6. Pseudo transitive Rule (IRs)

In Pseudo transitive Rule, if X determinesY and Y Z determines W, then XZ determines W.

fX - YadYZ — WthenXZ — W
Proof:

1 X — Y (given)
2. WY — V4 (given)
3. WX —> WY (using IRon 1 by augmenting / with W)
4. WX — Z (using IRz on 3 and 2)

Normalization

o Normalization isthe process of organizing the datain the database.

o Normalization is used to minimize the redundancy from a relation or set of relations.
It is also used to eliminate the undesirable characteristics like Insertion, Update and
Deletion Anomalies.

o Normalization divides the larger table into the smaller table and links them using
relationship.

o Thenormal formis used to reduce redundancy from the database table.

Types of Normal Forms

There are the four types of normal forms:

Normal Forms

Nor mal
Form

INF

2NF

3NF

ANF

SNF

Description

A relation isin INF if it contains an atomic value.

A relation will be in 2NF if it is in INF and all non-key attributes are fully functional
dependent on the primary key.

A relation will bein 3NF if it isin 2NF and no transition dependency exists.

A relation will be in 4NF if it is in Boyce Codd normal form and has no multi-valued
dependency.

A relation isin 5NF if it isin 4NF and not contains any join dependency and joining should be
lossless.

First Normal Form (INF)

(o]

(o]

A relation will be INF if it contains an atomic value.

It sates that an attribute of a table cannot hold multiple values. It must hold only
single-valued attribute.

First normal form disallows the multi-valued attribute, composite attribute, and their
combinations.

Example: Relation EMPLOYEE is not in 1NF because of multi-valued attribute

EMP_PHONE.
EMPLOYEE table:
EMP_ID EMP_NAME EMP_PHONE EMP_STATE
14 John 17272826385, UpP
9064738238
20 Harry 8574783832 Bihar
12 Sam 7390372389, Punjab
8589830302

The decomposition of the EMPLOY EE table into INF has been shown below:

EMP_ID EMP_NAME EMP_PHONE EMP_STATE

https://www.javatpoint.com/dbms-first-normal-form
https://www.javatpoint.com/dbms-second-normal-form
https://www.javatpoint.com/dbms-third-normal-form
https://www.javatpoint.com/dbms-forth-normal-form
https://www.javatpoint.com/dbms-fifth-normal-form

14 John 7272826385 uUpP

14 John 9064738238 UP

20 Harry 8574783832 Bihar
12 Sam 7390372389 Punjab
12 Sam 8589830302 Punjab

Second Normal Form (2NF)

o Inthe 2NF, relational must be in INF.
o Inthe second normal form, all non-key attributes are fully functional dependent on the

primary key

Example: Let's assume, a school can store the data of teachers and the subjects they teach. In
a school, ateacher can teach more than one subject.

TEACHER table

TEACHER_ID SUBJECT TEACHER_AGE
25 Chemistry 30

25 Biology 30

47 English 35

83 Math 38

83 Computer 38

In the given table, non-prime attribute TEACHER_AGE is dependent on TEACHER ID
which is a proper subset of a candidate key. That's why it violates the rule for 2NF.

To convert the given table into 2NF, we decompose it into two tables:

TEACHER_DETAIL table:

TEACHER_ID TEACHER_AGE

25 30

47

35

83

38

TEACHER_SUBJECT table:

25 Chemistry
25 Biology
47 English
83 Math

83 Computer

+

an fF: 8 |
I gahsfriny fe dnr
a: SVery Ao key 4 Ko kite

Third Normal Form (3NF)

o A relation will be in 3NF if it is in 2NF and not contain any transitive partial
dependency.

o 3NFisused to reduce the data duplication. It is also used to achieve the dataintegrity.

o If thereis no transitive dependency for non-prime attributes, then the relation must be
in third normal form.

A relation is in third normal form if it holds atleast one of the following conditions for every
non-trivial function dependency X — Y.

1. Xisasuper key.
2. Y isaprime attribute, i.e., each element of Y is part of some candidate key.
Example:

EMPLOYEE_DETAIL table:

EMP_ID EMP_NAME EMP_ZIP EMP_STATE EMP_CITY
222 Harry 201010 UP Noida
333 Stephan 02228 us Boston
444 Lan 60007 us Chicago
555 Katharine 06389 UK Norwich
666 John 462007 MP Bhopal

Super key in the table above:

1. {EMP_ID}, {EMP_ID, EMP_NAME}, {EMP_ID, EMP_NAME, EMP _ZIP}....s0 on

Candidate key: {EMP_ID}

Non-prime attributes: In the given table, all attributes except EMP_ID are non-
prime.

Here, EMP_STATE & EMP_CITY dependent on EMP_ZIP and EMP_ZIP dependent
on EMP_ID. The non-prime attributes (EMP_STATE, EMP_CITY) transitively
dependent on super key(EMP_ID). It violates the rule of third normal form.

That's why we need to move the EMP_CITY and EMP_STATE to the new
<EMPLOY EE_ZIP> table, with EMP_ZIP as a Primary key.

EMPLOYEE table:

EMP_ID EMP_NAME EMP_ZIP
222 Harry 201010
333 Stephan 02228
444 Lan 60007
555 Katharine 06389
666 John 462007

EMPLOYEE_ZIP table:

EMP _ZIP EMP_STATE EMP _CITY
201010 UP Noida

02228 US Boston
60007 US Chicago
06389 UK Norwich

462007 MP Bhopal

)

Boyce Codd normal form (BCNF)
N
o BCNF isthe advance version of 3NF. It is stricter than 3NF.

o A tableisin BCNF if every functional dependency X — Y, X is the super key of the
table.

o For BCNF, the table should be in 3NF, and for every FD, LHS is super key.

Example: Let's assume there is a company where employees work in more than one
department.

EMPLOYEE table:

264 India Designing D394 283

264 India Testing D394 300
364 UK Stores D283 232

364 UK Developing D283 549

In the abovetable Functional dependenciesare asfollows:

1. EMP_ID — EMP _COUNTRY
2. EMP DEPT — {DEPT_TYPE, EMP DEPT_NO}

Candidate key: {EMP-ID, EM P-DEPT}
Thetable is not in BCNF because neither EMP_DEPT nor EMP_ID alone are keys.
To convert the given table into BCNF, we decompose it into three tables:

EMP_COUNTRY table:

EMP_ID EMP_COUNTRY
264 India
264 India

EMP_DEPT table:

EMP_DEPT DEPT _TYPE EMP_DEPT_NO
Designing D394 283
Testing D394 300
Stores D283 232
Developing D283 549

EMP_DEPT_MAPPING table:

EMP_ID EMP_DEPT

D394 283

D394 300

D283 232

D283 549

Functional dependencies:

. EMPID — EMP _COUNTRY
. EMP DEPT — {DEPT_TYPE, EMP DEPT_NO}

Candidate keys:

For the first
For the second
For thethird table: {EMP_ID, EMP_DEPT}

A

table: EMP_ID
table EMP_DEPT

Fourth normal form (4NF)

o A relation will bein 4NF if it is in Boyce Codd normal form and has no multi-valued
dependency.

o For a dependency A — B, if for a single value of A, multiple values of B exists, then
the relation will be a multi-valued dependency.

Example

STUDENT

STU_ID COURSE HOBBY
21 Computer Dancing
21 Math Singing
34 Chemistry Dancing
74 Biology Cricket
59 Physics Hockey

The given STUDENT table is in 3NF, but the COURSE and HOBBY are two independent
entity. Hence, there is no relationship between COURSE and HOBBY .

In the STUDENT relation, a sudent with STU ID, 21 contains two
courses, Computer and Math and two hobbies, Dancing and Singing. So there is a Multi-
valued dependency on STU_ID, which leads to unnecessary repetition of data.

So to make the above table into 4NF, we can decompose it into two tables:

STUDENT_COURSE

STU_ID COURSE
21 Computer
21 Math
34 Chemistry
74 Biology
59 Physics

STUDENT_HOBBY

STU_ID HOBBY
21 Dancing
21 Singing

34 Dancing

Cricket

Hockey

74

59

Fifth normal form (5NF)

o A relation isin 5NF if it isin 4NF and not contains any join dependency and joining
should be lossless.

o 5SNF issatisfied when all the tables are broken into as many tables as possible in order
to avoid redundancy.

o 5NF isalso known as Project-join normal form (PJYNF).

Example

SUBJECT LECTURER SEMESTER
Computer Anshika Semester 1
Computer John Semester 1
Math John Semester 1
Math Akash Semester 2
Chemistry Praveen Semester 1

In the above table, John takes both Computer and Math class for Semester 1 but he doesn't
take Math class for Semester 2. In this case, combination of all these fields required to
identify a valid data.

Suppose we add a new Semester as Semester 3 but do not know about the subject and who
will be taking that subject so we leave Lecturer and Subject as NULL. But all three columns
together acts as aprimary key, so we can't leave other two columns blank.

So to make the above table into 5NF, we can decompose it into three relations P1, P2 & P3:

P1

SEMESTER SUBJECT
Semester 1 Computer
Semester 1 Math
Semester 1 Chemistry
Semester 2 Math

P2

Computer Anshika
Computer John
Math John
Math Akash
Chemistry Praveen

")
P3

y

Semester 1 Anshika
Semester 1 John
Semester 1 John
Semester 2 Akash
Semester 1 Praveen

o bk Ww DN PE

a bk~ w DN PE

UNIT V

Transaction Concept: Transaction State, Implementation of Atomicity and Durability,
Concurrent Executions, Serializability, Recoverability, Implementation of Isolation, Testing
for Seridizability, Failure Classification, Storage, Recovery and Atomicity, Recovery
algorithm. Indexing Techniques. B+ Trees. Search, Insert, Delete algorithms, File
Organization and Indexing, Cluster Indexes, Primary and Secondary Indexes , Index data
Structures, Hash Based Indexing: Tree base Indexing ,Comparison of File Organizations,
Indexes and Performance Tuning

Transaction

o Thetransaction isaset of logicaly related operation. It contains a group of tasks.

o A transaction is an action or series of actions. It is performed by a single user to
perform operations for accessing the contents of the database.

Example: Suppose an employee of bank transfers Rs 800 from X's account to Y's account.
This small transaction contains several low-level tasks:

X's Account

Open_Account(X)

Old_Baance = X.balance
New_Balance = Old_Balance - 800
X.balance = New_Baance
Close_Account(X)

Y's Account

Open_Account(Y)

Old/Balance = Y.baance

New Balance = Old_Balance + 800
Y .balance =New_Balance
Close_Account(Y)

Operations of Transaction:
Following are the main operations of transaction:

Read(X): Read operation is used to read the value of X from the database and stores it in a
buffer in main memory.

Write(X): Write operation is used to write the value back to the database from the buffer.

Let's take an example to debit transaction from an account which consists of following
operations:

. 1. R(X);
2. 2. X =X -500;
. 3. W(X);

Let's assume the value of X before starting of the transaction is 4000.

o Thefirst operation reads X's value from database and storesit in a buffer.

o The second operation will decrease the vaue of X by 500. So buffer will contain
3500.

o Thethird operation will write the buffer's value to the database. So X's final value will
be 3500.

But it may be possible that because of the failure of hardware, software or power, etc. that
transaction may fail before finished all the operations in the set.

For example: If in the above transaction, the debit transaction fails after executing operation
2 then X's value will remain 4000 in the database which is not acceptable by the bank.

To solve this problem, we have two important operations:
Commit: It isused to save the work done permanently.
Rollback: It is used to undo the work done.

Transaction property

The transaction has the four properties. These are used to maintain consistency in a database,
before and after the transaction.

Property of Transaction

1. Atomicity
2. Consistency
3. Isolation
4. Durability

Atomicity

means either all
successful or none.

Isolation

ensures that transaction
is isolated from other
transaction.

Atomicity

Durability

means once a transaction
has been committed,
it will remain so, even
in the event of errors,
power loss etc.

o It statesthat all operations of the transaction take place at once if not, the transaction

is aborted.

o Thereis no midway, i.e., the transaction cannot occur partially. Each transaction is
treated as one unit and either run to completion or is not executed at all.

Atomicity involves the following two operations:

Abort: If atransaction aborts then all the changes made are not visible.
Commit: If atransaction commits then all the changes made are visible.

Example: Let's assume that following transaction T consisting of T1 and T2. A consists of
Rs 600 and B consists of Rs 300. Transfer Rs 100 from account A to account B.

T1 T2
Read(A) Read(B)
A= A-100 Y:= Y+100
Write(A) Write(B)

After completion of the transaction, A consists of Rs 500 and B consists of Rs 400.

If the transaction T fails after the completion of transaction T1 but before completion of
transaction T2, then the amount will be deducted from A but not added to B. This shows the
inconsistent database state. In order to ensure correctness of database state, the transaction
must be executed in entirety.

Consistency

o The integrity constraints are maintained so that the database is consistent before and
after the transaction.

o The execution of atransaction will leave a database in either its prior stable state or a
new stable state.

o The consistent property of database states that every transaction sees a consistent
database instance.

o Thetransaction is used to transform the database from one consistent state to another
consistent state.

For example: Thetotal amount must be maintained before or after the transaction.

. Tota before T occurs = 600+300=900

2. Tota after T occurs= 500+400=900

Therefore, the database is consistent. In the case when T1 is completed but T2 fails, then
inconsistency will occur.

|solation

o It shows that the data which is used at the time of execution of atransaction cannot be
used by the second transaction until the first one is completed.

o Inisolation, if the transaction T1 is being executed and using the data item X, then
that data item can't be accessed by any other transaction T2 until the transaction T1
ends.

o The concurrency control subsystem of the DBMS enforced the isolation property.

Durability

o The durability property is used to indicate the performance of the database's
consistent state. It states that the transaction made the permanent changes.

o They cannot be lost by the erroneous operation of a faulty transaction or by the
system failure. When a transaction is completed, then the database reaches a state
known as the consistent state. That consistent state cannot be lost, even in the event of
asystem'sfailure.

o Therecovery subsystem of the DBMS has the responsibility of Durability property.

States of Transaction

In a database, the transaction can be in one of the following states -

Partially
Committed

Committed

Begin

End

Falled

Active state

o The active state is the first state of every transaction. In this state, the transaction is
being executed.

o For example: Insertion or deletion or updating a record is done here. But al the
records are still not saved to the database.

Partially committed

o Inthe partially committed state, a transaction executes its final operation, but the data
is still not saved to the database.

o In the total mark calculation example, a final display of the total marks step is
executed in this state.

Committed

A transaction is said to be in a committed state if it executes all its operations successfully. In
this state, all the effects are now permanently saved on the database system.

Failed state

o If any of the checks made by the database recovery system fails, then the transaction
issaid to be in the failed state.

o Inthe example of total mark calculation, if the database is not able to fire a query to
fetch the marks, then the transaction will fail to execute.

Aborted

o If any of the checks faill and the transaction has reached a failed state then the
database recovery system will make sure that the database is in its previous consistent
state. If not then it will abort or roll back the transaction to bring the database into a
consistent state.

o If the transaction fails in the middle of the transaction then before executing the
transaction, all the executed transactions are rolled back to its consistent state.

o After aborting the transaction, the database recovery module will select one of the two
operations:

1. Re-start the transaction

2. Kill the transaction

Schedule

A series of operation from one transaction to another transaction is known as schedule. It is
used to preserve the order of the operation in each of the individual transaction.

{ Schedule J

Serial Non-serial Serializable
Schedule Schedule Schedule

1. Seria Schedule

The serial schedule is atype of schedule where one transaction is executed completely before
starting another transaction. In the serial schedule, when the first transaction completes its
cycle, then the next transaction is executed.

For example: Suppose there are two transactions T1 and T2 which have some operations. If
it has no interleaving of operations, then there are the following two possible outcomes:

1. Execute al the operations of T1 which was followed by all the operations of T2.
2. Execute all the operations of T1 which was followed by all the operations of T2.

o Inthe given (@) figure, Schedule A shows the serial schedule where T1 followed by
T2.

o In the given (b) figure, Schedule B shows the serial schedule where T2 followed by
T1.

2. Non-serial Schedule

o If interleaving of operationsis allowed, then there will be non-serial schedule.

o It contains many possible orders in which the system can execute the individual
operations of the transactions.

o In the given figure (c) and (d), Schedule C and Schedule D are the non-serial
schedules. It has interleaving of operations.

3. Seridizable schedule

o The seriadizability of schedules is used to find non-serial schedules that allow the
transaction to execute concurrently without interfering with one another.

o It identifies which schedules are correct when executions of the transaction have
interleaving of their operations.

o A non-seria schedule will be serializable if its result is equal to the result of its
transactions executed serially.

(a)
T1 T2
read(A);
A=A-N;
write(A);
: read(B);
Time B:=B+N;
write(B);
read(A);
A=A+M;
A write(A);
Schedule A
(b)
T1 T2
read(A);
A=A+M;
write(A):
- read(A);
fime A:=A-N;
write(A);
read(B):
L] B:: B +N:
write(B):

Schedule B

(c)

Time

(d)

Time

Here,

T1 T2
read(A);
A:=A-N;
read(A);
A=A+M;
write(A);
read(B);
write(A);
B:=B+N;
write(B);
Schedule C
T1 T2
read(A);
A:=A-N:
write(A);
read(A);
A=A+ M;
write(A);
read(B);
B:=B+N:
write(B);
Schedule D

Schedule A and Schedule B are serial schedule.

Schedule C and Schedule D are Non-serial schedule.

Testing of Serializability
Serialization Graph is used to test the Serializability of a schedule.

Assume a schedule S. For S, we construct a graph known as precedence graph. This graph
hasapair G = (V, E), whereV consists a set of vertices, and E consists a set of edges. The set
of vertices is used to contain al the transactions participating in the schedule. The set of
edgesis used to contain all edges Ti ->Tj for which one of the three conditions holds:

1. Create anode Ti — Tj if Ti executes write (Q) before Tj executes read (Q).
2. Create a node Ti — Tj if Ti executes read (Q) before Tj executes write (Q).

3. Create anode Ti — Tj if Ti executes write (Q) before Tj executes write (Q).

Precedence graph for Schedule §

o If a precedence graph contains a single edge Ti — Tj, then all the instructions of Ti

are executed before the first instruction of Tj is executed.

o If aprecedence graph for schedule S contains a cycle, then Sis non-seriaizable. If the
precedence graph has no cycle, then Sis known as serializable.

For example:

Time

Explanation:

Read(A): In
Read(B): In
Read(C): In
Write(B): B
Writeg(C): C
Write(A): A
Write(A): In
Write(C): In

T1 T2 T3
Read(A)
Read(B)
Ar=1(A)
Read(C)
B:=1£,(B)
Write(B)
C:=1;(C)
Write(C)
Write(A)
Read(B)
Read(A)
A=1(A)
Read(C)
Write(A)
C=15(C)
Write(C)
B:=1(B)
Write(B)
Schedule 51
T1l, no subsequent writes to A, sO no new edges
T2, no subsequent writes to B, so no new edges
T3, no subsequent writes to C, so no new edges
is subsequently read by T3, so add edge T2 — T3
is subsequently read by TI, so add edge T3 — TI
is subsequently read by T2, so add edge T1 — T2
T2, no subsequent reads to A, sO no new edges
T1l, no subsequent reads to C, so no new edges

Write(B): In T3, no subsequent reads to B, so no new edges

Precedence graph for schedule S1.:

T2 “ T3

The precedence graph for schedule S1 contains a cycle that's why Schedule S1 is non-
serializable.

T4 T5 To
Read(A)
A:=11(A)
Read(C)
Write(A)
A:=12(C)
Read(B)
Write(C)
Read(A)
Read(C)
Time B:=13(B)
Write(B)
C:=14(C)
Read(B)
Write(C)
A:=f5(A)
Write(A)
B:=f6(B)
M Write(B)

Schedule S2

Explanation:

Read(A): In T4,no0 subsequent writes to A, SO no
Read(C):In T4, no subsequent writes to C, s0O no
Write(A): A is subsequently read by T5, so add edge
Read(B): In T5n0 subsequent writes to B, SO no
Write(C): C is subsequently read by T6, so add edge
Write(B): A is subsequently read by T6, so add edge
Write(C): In. T6, no subsequent reads to C, so no
Write(A): In T5, no subsequent reads to A, SO no
Write(B): In T6, no subsequent reads to B, so no new edges

Precedence graph for schedule S2:

T4 o T6

new edges
new edges

new edges

new edges
new edges

The precedence graph for schedule S2 contains no cycle that's why ScheduleS2 is

serializable.

Conflict Serializable Schedule

o A schedule is caled conflict seriaizability if after swapping of non-conflicting

operations, it can transform into a seria schedule.

o The schedule will be a conflict serializable if it is conflict equivalent to a serial

schedule.

Conflicting Operations
The two operations become conflicting if al conditions satisfy:
1. Both belong to separate transactions.

2. They have the same data item.
3. They contain at least one write operation.

Example:

Swapping is possible only if S1 and S2 arelogically equal.

1.T1: Read(A) T2: Read(A)

T]. T2 T]. T2

Read(A) Swapped Read(A)

Read(4) > |Read(d)

Schedule S1 Schedule S2

Here, S1 = S2. That meansit is non-conflict.

2.T1: Read(A) Tz: Write(A)

T]. T2 T]. T2

Read(A) Swapped Write(A)
Write(A) —> |Read(a)

Schedule S1 Schedule S2

Here, S1 #S2. That means it is conflict.

Conflict Equivaent

In the conflict equivalent, one can be transformed to another by swapping non-conflicting
operations. In the given example, S2 is conflict equivalent to S1 (S1 can be converted to S2

by swapping non-conflicting operations).

Two schedules are said to be conflict equivalent if and only if:

1. They contain the same set of the transaction.

2. |If each pair of conflict operations are ordered in the same way.

Example:
Non-serial schedule Serial Schedule
T1 T2 T1 To
Read(A)
Write(A) Read(A)
Write(A)
Read(A) Rf:gd(B)
Write(A) Write(B)
Read(B) Read(A)
Write(B) Write(A)
Read(B) Regd(B)
Write(B) Write(B)
Schedule S1 Schedule S2

Schedule S2 is a seria schedule because, in this, all operations of T1 are performed before
starting any operation of T2. Schedule S1 can be transformed into a seria schedule by

swapping non-conflicting operations of S1.

After swapping of non-conflict operations, the schedule S1 becomes:

T1 T2

Read(A)
Write(A)
Read(B)
Write(B)

Read(A)
Write(A)
Read(B)
Write(B)

Since, Sl is conflict serializable.
View Seridizability

o A schedulewill view seridizableif it isview equivalent to a seria schedule.
o If ascheduleis conflict serializable, then it will be view serializable.

o Theview seriaizable which does not conflict seridizable contains blind writes.
View Equivaent

Two schedules S1 and S2 are said to be view equivaent if they satisfy the following
conditions:

1. Initial Read

An initial read of both schedules must be the same. Suppose two schedule S1 and S2. In
schedule S1, if atransaction T1 is reading the data item A, then in S2, transaction T1 should
alsoread A.

T1 T2 T1 T2

Read(A) _ Write(A)
Write(A) Read(A)

Schedule S1 Schedule S2

Above two schedules are view equivalent because Initial read operation in S1 is done by T1
andin S2itisaso done by T1.

2. Updated Read

In schedule S1, if Ti isreading A which is updated by Tj then in S2 aso, Ti should read A
which is updated by Tj.

T1 T2 13 T1 T2 13
Write(A) , Write(A)
Write(A) Write(A)
Read(A) Read(A)
Schedule S1 Schedule S2

Above two schedules are not view equal because, in S1, T3 is reading A updated by T2 and
in S2, T3 isreading A updated by T1.

3. Final Write

A fina write must be the same between both the schedules. In schedule S1, if a transaction
T1 updates A at last then in S2, final writes operations should also be done by T1.

T1 T2 T3 T1 T2 T3
Write(A) Read(A)
Read(A) Write(A)
Write(A) Write(A)
Schedule S1 Schedule S2

Above two schedules is view equal because Fina write operation in S1 isdone by T3 and in
S2, the final write operation is also done by T3.

Example:

N o g bk~ w bR

T1 T2 T3
Read(A)
Write(A)
Write(A)
Write(A)
Schedule S

With 3 transactions, the total number of possible schedule

=3l=6

S1=<T1T2T3>
S2=<T1T3T2>
S3=<T2T3T1>
HA=<T2T1T3>
SH5=<T3T1T2>
S6=<T3T2T1>

Takingfirst schedule S1:

T1 T2 T3
Read(A)
Write(A)
Write(A)
Write(A)
Schedule S1

Step 1: final updation on dataitems

In both schedules S and S1, there is no read except the initial read that's why we don't need to
check that condition.

Step 2: Initial Read
Theinitial read operationin Sisdoneby T1 andin S1, it isaso done by T1.

Step 3: Final Write

The final write operation in Sisdone by T3 and in S1, itisaso done by T3. So, Sand S1 are
view Equivalent.

The first schedule S1 satisfies all three conditions, so we don't need to check another
schedule.

Hence, view equivalent serial scheduleis:

.11 - T2 — T3

Recoverability of Schedule

Sometimes a transaction may not execute completely due to a software issue, system crash or
hardware failure. In that case, the failed transaction has to be rollback. But some other
transaction may also have used value produced by the failed transaction. So we also have to
rollback those

tr

T1 T1's buffer | T2 T2's buffer Database
space space
A = 6500

Read(A); A = 6500 A = 6500

A=A-500; A = 6000 A =6500

Write(A); A = 6000 A = 6000
Read(A); A = 6000 A = 6000
A=A+ 1000; | A= 7000 A = 6000
Write(A): A = 7000 A = 7000
Commit;

Failure Point

Commit;

ansactions.

The above table 1 shows a schedule which has two transactions. T1 reads and writes the
value of A and that value is read and written by T2. T2 commits but later on, T1 fails. Due to
the failure, we have to rollback T1. T2 should also be rollback because it reads the value
written by T1, but T2 can't be rollback because it already committed. So this type of schedule
is known as irrecoverable schedule.

Irrecoverable schedule: The schedule will be irrecoverable if Tj reads the updated value of
Ti and Tj committed before Ti commit.

T1 T1's buffer | T2 T2's buffer Database
space space
A = 6500
Read(A); A = 6500 A = 6500
A=A-500; |A=6000 A = 6500
Write(A): A = 6000 A = 6000
Read(A); A = 6000 A = 6000
A=A+ 1000; | A = 7000 A = 6000
Write(A); A = 7000 A = 7000
Failure Point
Commit;
Commit;

The above table 2 shows a schedule with two transactions. Transaction T1 reads and writes
A, and that value is read and written by transaction T2. But later on, T1 fails. Dueto this, we
have to rollback T1. T2 should be rollback because T2 has read the value written by T1. Asit
has not committed before T1 commits so we can rollback transaction T2 as well. So it is

recoverable with cascade rollback.

Recoverable with cascading rollback: The schedule will be recoverable with cascading

rollback if Tj reads the updated value of Ti. Commit of Tj is delayed till commit of Ti.

T1 T1's buffer | T2 T2's buffer Database
space space
A = 6500
Read(A); A = 6500 A = 6500
A=A-500; A = 6000 A = 6500
Write(A); A = 6000 A = 6000
Commit; Read(A); A = 6000 A = 6000
A=A+ 1000; |A=7000 A = 6000
Write(A); A = 7000 A = 7000
Commit;

The above Table 3 shows a schedule with two transactions. Transaction T1 reads and write A
and commits, and that value is read and written by T2. So this is a cascade less recoverable

schedule.

Failure Classification

To find that where the problem has occurred, we generalize a failure into the following

categories:

1. Transaction failure
2. System crash

3. Disk failure

1. Transaction failure

The transaction failure occurs when it fails to execute or when it reaches a point from
where it can't go any further. If afew transaction or process is hurt, then thisis caled
astransaction failure.

Reasons for atransaction failure could be -

1. Logical errors: If atransaction cannot complete due to some code error or an
interna error condition, then the logical error occurs.

2. Syntax error: It occurs where the DBMS itself terminates an active
transaction because the database system is not able to execute it. For
example, The system aborts an active transaction, in case of deadlock or
resource unavailability.

2. System Crash

o System failure can occur due to power failure or other hardware or software
failure. Example: Operating system error.

Fail-stop assumption: In the system crash, non-volatile storage is assumed
not to be corrupted.

3. Disk Failure

o It occurs where hard-disk drives or storage drives used to fail frequently. It
was a common problem in the early days of technology evolution.

o Disk failure occurs due to the formation of bad sectors, disk head crash, and
unreachability to the disk or any other failure, which destroy all or part of disk
storage.

Log-Based Recovery

o Thelogisaseguence of records. Log of each transaction is maintained in some stable
storage so that if any failure occurs, then it can be recovered from there.

o If any operation is performed on the database, then it will be recorded in the log.

o But the process of storing the logs should be done before the actual transaction is
applied in the database.

0

Let's assume there is a transaction to modify the City of a student. The following logs are
written for this transaction.

When the transaction isinitiated, then it writes 'start' |og.
1. <Tn, Start>

o When the transaction modifies the City from 'Noida to 'Bangalore’, then another log is
written to thefile.

1. <Tn, City, 'Noida, 'Bangalore’ >
o When the transaction is finished, then it writes another log to indicate the end of the
transaction.

1. <Tn, Commit>
There are two approaches to modify the database:

1. Deferred database modification:

o The deferred modification technique occurs if the transaction does not modify the
database until it has committed.

o In this method, all the logs are created and stored in the stable storage, and the
database is updated when a transaction commits.

2. Immediate database modification:

o The Immediate modification technique occurs if database modification occurs while
the transaction is still active.

o In this technique, the database is modified immediately after every operation. It
follows an actual database modification.

Recovery using Log records

When the system is crashed, then the system consults the log to find which transactions need
to be undone and which need to be redone.

1. If the log contains the record <Ti, Start> and <Ti, Commit> or <Ti, Commit>, then
the Transaction Ti needs to be redone.

2. If log contains record<Tp, Start> but does not contain the record either <Ti, commit>
or <Ti, abort>, then the Transaction Ti needs to be undone.

Checkpoint

o The checkpoint is a type of mechanism where all the previous logs are removed from
the system and permanently stored in the storage disk.

o The checkpoint is like a bookmark. While the execution of the transaction, such
checkpoints are marked, and the transaction is executed then using the steps of the
transaction, the log files will be created.

o When it reaches to the checkpoint, then the transaction will be updated into the
database, and till that point, the entire log file will be removed from the file. Then the
log file is updated with the new step of transaction till next checkpoint and so on.

o The checkpoint is used to declare a point before which the DBMS was in the
consistent state, and all transactions were committed.

Recovery using Checkpoint

In the following manner, arecovery system recovers the database from this failure:

Checkpoin Failure

T1 | I

T2 |

Y

Time

o Therecovery system reads log files from the end to start. It reads log files from T4 to
T1.

o Recovery system maintains two lists, aredo-list, and an undo-list.

o The transaction is put into redo state if the recovery system sees a log with <Tn,
Start> and <Tn, Commit> or just <Tn, Commit>. In the redo-list and their previous
list, al the transactions are removed and then redone before saving their logs.

o For example: In the log file, transaction T2 and T3 will have <Tn, Start> and <Tn,
Commit>. The T1 transaction will have only <Tn, commit> in the log file. That's why
the transaction is committed after the checkpoint is crossed. Hence it puts T1, T2 and
T3 transaction into redo list.

o The transaction is put into undo state if the recovery system sees a log with <Tn,

Start> but no commit or abort log found. In the undo-list, al the transactions are
undone, and their logs are removed.

o For example: Transaction T4 will have <Tn, Start>. So T4 will be put into undo list
since this transaction is not yet complete and failed amid.

INDEXING TECHNIQUES:

B+ Tree

o TheB+ treeisabalanced binary search tree. It follows a multi-level index format.

o In the B+ tree, leaf nodes denote actual data pointers. B+ tree ensures that all leaf
nodes remain at the same height.

o In the B+ tree, the leaf nodes are linked using a link list. Therefore, a B+ tree can
support random access as well as sequential access.

Structure of B+ Tree

o Inthe B+ tree, every leaf nodeis at equal distance from the root node. The B+ tree is
of the order n where nisfixed for every B+ tree.

o It contains an internal node and leaf node.

s] 0L]800 0l B0 000

Internal node

o Aninternal node of the B+ tree can contain at least n/2 record pointers except the root
node.

o Atmost, aninternal node of the tree contains n pointers.

Leaf node

o The leaf node of the B+ tree can contain at least n/2 record pointers and n/2 key

values.

o At most, aleaf node contains n record pointer and n key values.

o Every leaf node of the B+ tree contains one block pointer P to point to next leaf node.

Searching arecord in B+ Tree

Suppose we have to search 55 in the below B+ tree structure. First, we will fetch for the
intermediary node which will direct to the leaf node that can contain arecord for 55.

So, in the intermediary node, we will find a branch between 50 and 75 nodes. Then at the
end, we will be redirected to the third leaf node. Here DBM S will perform a sequential search

to find 55.

25

50

b,

/

5 |10 | 15 | 20 25|30 |35 | 40

5

75
".\
0|55

65 |70 75 | 80

90

95

B+ Tree Insertion

Suppose we want to insert a record 60 in the below structure. It will go to the 3rd leaf node
after 55. It is a balanced tree, and a leaf node of this tree is already full, so we cannot insert

60 there.

In this case, we have to split the leaf node, so that it can be inserted into tree without affecting

thefill factor, balance and order.

L1 25 || 50 | |75 |]
5 |10 | 15 | 20 25 |30 | 35 | 40 50 | 55| 65 | 70 75 | 80 | 90 | 95
60

The 3" leaf node has the values (50, 55, 60, 65, 70) and its current root node is 50. We will
split the leaf node of the tree in the middle so that its balance is not altered. So we can group

(50, 55) and (60, 65, 70) into 2 leaf nodes.

If these two has to be leaf nodes, the intermediate node cannot branch from 50. It should have
60 added to it, and then we can have pointers to a new leaf node.

25

50

60

75

10

15

20

25

30

35

40

50

e |

75

80

90

95

60

65

70

This is how we can insert an entry when there is overflow. In a normal scenario, it is very

easy to find the node where it fits and then place it in that |eaf node.

B+ Tree Deletion

Suppose we want to delete 60 from the above example. In this case, we have to remove 60
from the intermediate node as well as from the 4th leaf node too. If we remove it from the
intermediate node, then the tree will not satisfy the rule of the B+ tree. So we need to modify
it to have a balanced tree.

After deleting node 60 from above B+ tree and re-arranging the nodes, it will show as

follows:
Ll 25 50 75
// H"\
5 |10 |15 | 20 25130 |35 |40 50 |55 |65 [70 75 | 80 |90 | 95

File Organization

(o]

The Fileis a collection of records. Using the primary key, we can access the records.

The type and frequency of access can be determined by the type of file organization
which was used for a given set of records.

File organization is alogica relationship among various records. This method defines

how file records are mapped onto disk blocks.

(o]

File organization is used to describe the way in which the records are stored in terms
of blocks, and the blocks are placed on the storage medium.

The first approach to map the database to the file is to use the several files and store
only one fixed length record in any given file. An alternative approach is to structure
our files so that we can contain multiple lengths for records.

Files of fixed length records are easier to implement than the files of variable length
records.

Objective of file organization

(o]

(o]

It contains an optimal selection of records, i.e., records can be selected as fast as
possible.

To perform insert, delete or update transaction on the records should be quick and
easy.
The duplicate records cannot be induced as a result of insert, update or delete.

For the minimal cost of storage, records should be stored efficiently.

Types of file organization:

File organization contains various methods. These particular methods have pros and cons on
the basis of access or selection. In the file organization, the programmer decides the best-
suited file organization method according to his requirement.

Types of file organization are as follows:

{ File Organization J

Sequential Heap FO
FO

1SAM B+ Tree Cluster
FO FO

1

(0]

(0]

0

Sequential file organization
Heap file organization
Hash file organization

https://www.javatpoint.com/dbms-sequential-file-organization
https://www.javatpoint.com/dbms-heap-file-organization
https://www.javatpoint.com/dbms-hash-file-organization

o B+ fileorganization
o Indexed sequentia access method (ISAM)

o Cluster file organization

Sequential File Organization

This method is the easiest method for file organization. In this method, files are stored
sequentially. This method can be implemented in two ways:

1. Pile File Method:

o Itisaquite ssmple method. In this method, we store the record in a sequence, i.e., one
after another. Here, the record will be inserted in the order in which they are inserted
into tables.

o In case of updating or deleting of any record, the record will be searched in the
memory blocks. When it is found, then it will be marked for deleting, and the new
record isinserted.

R1 R3 | R9 R8
| i
Starting of the End 'F'fthe
File File

Insertion of the new record:

Suppose we have four records R1, R3 and so on upto R9 and R8 in a sequence. Hence,
records are nothing but a row in the table. Suppose we want to insert a new record R2 in the
sequence, then it will be placed at the end of the file. Here, records are nothing but arow in
any table.

R1 R3 | o ____ R9 R8
| | \
Starting of the End -.thhe
File File
New Record

2. Sorted File Method:

https://www.javatpoint.com/dbms-b-plus-file-organization
https://www.javatpoint.com/dbms-indexed-sequential-access-method
https://www.javatpoint.com/dbms-cluster-file-organization

o Inthis method, the new record is always inserted at the file's end, and then it will sort
the sequence in ascending or descending order. Sorting of records is based on any
primary key or any other key.

o In the case of modification of any record, it will update the record and then sort the
file, and lastly, the updated record is placed in the right place.

R1 R3 | ___________ R9 R8
| l
Starting of the End ':thhe
File File

Insertion of the new record:

Suppose there is a preexisting sorted sequence of four records R1, R3 and so on upto R6 and
R7. Suppose a new record R2 has to be inserted in the sequence, then it will be inserted at the
end of thefile, and then it will sort the sequence.

R1 R3 | R6 R7

| I

l L X R2
Starting of the End :ufthe

File Vi New Record

R1 R2 R3 o R6 R7

| i
Starting of the End of the

File File

Pros of sequential file organization

o It containsafast and efficient method for the huge amount of data.

o Inthis method, files can be easily stored in cheaper storage mechanism like magnetic
tapes.

o Itissmpleindesign. It requires no much effort to store the data.

o This method is used when most of the records have to be accessed like grade
calculation of a student, generating the salary dip, etc.

o Thismethod isused for report generation or statistical calculations.

Cons of sequential file organization

o It will waste time as we cannot jump on a particular record that is required but we
have to move sequentially which takes our time.

o Sorted file method takes more time and space for sorting the records.
Heap file organization

o It isthe simplest and most basic type of organization. It works with data blocks. In
heap file organization, the records are inserted at the file's end. When the records are
inserted, it doesn't require the sorting and ordering of records.

o When the data block is full, the new record is stored in some other block. This new
data block need not to be the very next data block, but it can select any data block in
the memory to store new records. The heap file is also known as an unordered file.

o Inthefile, every record has auniqueid, and every page in afileis of the same size. It
isthe DBMS responsibility to store and manage the new records.

Data Blocks in memory
Data Records
B 736
R1 - DataBlock 1
538
R3 N ,
|
R6 N 637
Data Block 2
R4 y . 273
T
RS / II
ey 963
DataBlock 3
A 474

Insertion of anew record

Suppose we have five records R1, R3, R6, R4 and R5 in a heap and suppose we want to insert
a new record R2 in a heap. If the data block 3 is full then it will be inserted in any of the
database selected by the DBMS, let's say data block 1.

Data Blocks in memory

Data Records
736
R1 ~ Data Block 1
538
R3 . :
I
R6 637
Data Block 2
R4 273
T
R5 ll
T 963
I DataBlock 3
' 474
New R2 /
Record

If we want to search, update or delete the data in heap file organization, then we need to
traverse the data from staring of the filetill we get the requested record.

If the database is very large then searching, updating or deleting of record will be time-
consuming because there is no sorting or ordering of records. In the heap file organization,
we need to check all the data until we get the requested record.

Pros of Heap file organization

o It is avery good method of file organization for bulk insertion. If there is a large
number of data which needs to load into the database at a time, then this method is
best suited.

o In case of a small database, fetching and retrieving of records is faster than the
sequential record.

Cons of Heap file organization

o This method is inefficient for the large database because it takes time to search or
modify the record.

o Thismethod isinefficient for large databases.
Hash File Organization
Hash File Organization uses the computation of hash function on some fields of the records.

The hash function's output determines the location of disk block where the records are to be
placed.

Data Records Data Blocks in memory
R1 ~ » AA4BF
R3 ~ » GDSKA
R6 ~ . AB7HL
R4 A - SGI9KA
I I
I I
I I
R5 A ~a SV4HD

When a record has to be received using the hash key columns, then the address is generated,
and the whole record is retrieved using that address. In the same way, when a new record has
to be inserted, then the address is generated using the hash key and record is directly inserted.
The same processis applied in the case of delete and update.

In this method, there is no effort for searching and sorting the entire file. In this method, each
record will be stored randomly in the memory.

Data Records Data Blocks in memory

R1 N » AA4BF
R3 - « GDSKA
R6 AB7HL
N Y
R4 y HD5LE
| SGOKA
|
RS) :
|
New — R2 - b SV4HD
Record

Indexed sequential access method (ISAM)

ISAM method is an advanced sequential file organization. In this method, records are stored
in the file using the primary key. An index value is generated for each primary key and
mapped with the record. Thisindex contains the address of the record in the file.

Data Records Data Blocks in memory
R1 AA6GDK | - D546G
R2 BS8KA] - XS5GF
R5 SA7VD N BS8KA
R7 D546G B DH4FD
R8 XS5GF . o) AA6DK

I I
I |
I I

R9 DH4FD ~ [SA7VD

If any record has to be retrieved based on its index value, then the address of the data block is
fetched and the record is retrieved from the memory.

Pros of ISAM:

(0]

In this method, each record has the address of its data block, searching a record in a
huge database is quick and easy.

This method supports range retrieval and partial retrieval of records. Since the index
is based on the primary key values, we can retrieve the data for the given range of
value. In the same way, the partial value can also be easily searched, i.e., the student
name starting with 'JA" can be easily searched.

Cons of ISAM

This method requires extra space in the disk to store the index value.
When the new records are inserted, then these files have to be reconstructed to
maintain the sequence.

When the record is deleted, then the space used by it needs to be released. Otherwise,
the performance of the database will slow down.

Cluster file organization

o

When the two or more records are stored in the same file, it is known as clusters.
These files will have two or more tables in the same data block, and key attributes
which are used to map these tables together are stored only once.

This method reduces the cost of searching for various records in different files.

The cluster file organization is used when there is a frequent need for joining the
tables with the same condition. These joins will give only a few records from both
tables. In the given example, we are retrieving the record for only particular
departments. This method can't be used to retrieve the record for the entire
department.

EMPLOYEE

DEPARTMENT

EMP_ID | EMP_NAME | ADDRESS | DEP_ID DEP ID | DEP_NAME
1 John Delhi 14 10 Math

2 Robert Gujarat 12 11 English

3 David Mumbai |15 12 Java

4 Amelia Meerut 11 13 Physics

5 Kristen Noida 14 14 Civil

6]EleSCIH Delhi 13 15 Chemlstry
7 Amy Bihar 10

8 Sonoo UP 12
Cluster Key

DEP_ID | DEP_NAME | EMP_ID | EMP_NAME | ADDRESS

10 Math 7 Amy Bihar

11 English 4 Amelia Meerut

12 Java 2 Robert Gujarat

12 8 Sonoo UP

13 Physics 6 Jackson Delhi

14 Civil 1 John Delhi

14 5 Kristen Noida

15 Chemistry |3 David Mumbai

In this method, we can directly insert, update or delete any record. Data is sorted based on the
key with which searching is done. Cluster key is atype of key with which joining of the table

is performed.

Types of Cluster file organization:

Cluster file organization is of two types:

1. Indexed Clusters:

In indexed cluster, records are grouped based on the cluster key and stored together. The
above EMPLOYEE and DEPARTMENT relationship is an example of an indexed cluster.
Here, al the records are grouped based on the cluster key- DEP_ID and all the records are

grouped.

2. Hash Clusters:

It is similar to the indexed cluster. In hash cluster, instead of storing the records based on the
cluster key, we generate the value of the hash key for the cluster key and store the records
with the same hash key value.

Pros of Cluster file organization

o The cluster file organization is used when there is a frequent request for joining the
tables with same joining condition.

o It providesthe efficient result when thereis a 1:M mapping between the tables.

Cons of Cluster file organization

o Thismethod has the low performance for the very large database.

o If thereis any change in joining condition, then this method cannot use. If we change
the condition of joining then traversing the file takes alot of time.

o Thismethod is not suitable for atable with a 1:1 condition.

Indexingin DBMS

o Indexing is used to optimize the performance of a database by minimizing the number
of disk accesses required when aquery is processed.

o The index is a type of data structure. It is used to locate and access the data in a
database table quickly.

Index structure:

Indexes can be created using some database columns.

Search key Data
Reference

Fig: Structure of Index

o Thefirst column of the database is the search key that contains a copy of the primary
key or candidate key of the table. The values of the primary key are stored in sorted
order so that the corresponding data can be accessed easily.

o The second column of the database is the data reference. It contains a set of pointers
holding the address of the disk block where the value of the particular key can be
found.

Indexing Methods

T R T Rty T
T Jior R o
Indexi] Metnoas

Ordered indices Primary Index Clustering Index Secondary Index

Dense index Sparse index

Ordered indices

The indices are usually sorted to make searching faster. The indices which are sorted are
known as ordered indices.

Example: Suppose we have an employee table with thousands of record and each of whichis
10 bytes long. If their IDs start with 1, 2, 3....and so on and we have to search student with
ID-543.

o Inthe case of adatabase with no index, we have to search the disk block from starting
till it reaches 543. The DBM S will read the record after reading 543* 10=5430 bytes.

o In the case of an index, we will search using indexes and the DBMS will read the
record after reading 542* 2= 1084 bytes which are very less compared to the previous
case.

Primary Index

o If theindex is created on the basis of the primary key of the table, then it is known as
primary indexing. These primary keys are unique to each record and contain 1:1
relation between the records.

o Asprimary keys are stored in sorted order, the performance of the searching operation
is quite efficient.

o Theprimary index can be classified into two types. Dense index and Sparse index.

Dense index

o Thedenseindex contains an index record for every search key value in the datafile. It
makes searching faster.

o In this, the number of records in the index table is same as the number of records in

the main table.

o It needs more space to store index record itself. The index records have the search key

and a pointer to the actual record on the disk.

UP . > UP Agra 1,604,300

USA . » USA Chicago 2,789,378

Nepal . » Nepal Kathmandu | 1,456,634

UK . » UK Cambridge | 1,360,364
Sparse index

o Inthedatafile, index record appears only for afew items. Each item points to a block.

o Inthis, instead of pointing to each record in the main table, the index points to the

records in the main table in a gap.

Up . > UP Agra 1,604,300
Nepal o~ USA Chicago 2,789,378
"\\
UK -~ ™ Nepal Kathmandu | 1,456,634
\‘h\-.._‘_* L
UK Cambridge | 1,360,364

Clustering Index

o A clustered index can be defined as an ordered data file. Sometimes the index is
created on non-primary key columns which may not be unique for each record.

o In this case, to identify the record faster, we will group two or more columns to get
the unique value and create index out of them. This method is called a clustering

index.

o The records which have similar characteristics are grouped, and indexes are created

for these group.

Example: suppose a company contains several employees in each department. Suppose we
use a clustering index, where all employees which belong to the same Dept ID are

considered within a single cluster, and index pointers point to the cluster as a whole. Here
Dept_ld isanon-unique key.

Cept_ID Painter
1
2
3
4
- 11 Record
5 i
2z
I—P Z Record
Z
2
2 |
|
;LE 3 Record
]
]
4 |
> 4 Record
* 5
O
5 X |

The previous schema is little confusing because one disk block is shared by records which

belong to the different cluster. If we use separate disk block for separate clusters, then it is
called better technique.

Dept ID | Pointer —— Record
1
1 X
2
L a2 Record
Z
3 7
7 |
[
4
|—) 2z Record
7]
x|
L 3 Record
]
]
x|
I— Record
|
x|
| O Record
O
o
x|

Secondary Index

In the sparse indexing, as the size of the table grows, the size of mapping also grows. These
mappings are usually kept in the primary memory so that address fetch should be faster. Then
the secondary memory searches the actual data based on the address got from mapping. If the
mapping size grows then fetching the address itself becomes slower. In this case, the sparse
index will not be efficient. To overcome this problem, secondary indexing is introduced.

In secondary indexing, to reduce the size of mapping, another level of indexing is introduced.
In this method, the huge range for the columns is selected initialy so that the mapping size of
the first level becomes small. Then each range is further divided into smaller ranges. The
mapping of thefirst level is stored in the primary memory, so that address fetch is faster. The
mapping of the second level and actual data are stored in the secondary memory (hard disk).

Roll Pointer

100

200

“f

300

\

Primary Level Index
(RAM)

For example:

Roll Pointer Data bock in Memory
* 100 * 100
110 3 101

120 \. - - —------
110
111

' 200 110 |- ——— - -
210 \ 120
220 i 121
*300 \ 200
320] 201

310 - - 7= - = ===
210

Secondary Level Index El 1_ _____

(Hard Disk)

300

o If you want to find the record of roll 111 in the diagram, then it will search the highest
entry which is smaller than or equal to 111 in the first level index. It will get 100 at

thislevel.

o Then in the second index level, again it does max (111) <= 111 and gets 110. Now
using the address 110, it goes to the data block and starts searching each record till it

gets 111.

o Thisis how a search is performed in this method. Inserting, updating or deleting is

also done in the same manner.

Hashing

In a huge database structure, it is very inefficient to search al the index values and reach the
desired data. Hashing technique is used to calculate the direct location of a data record on the

disk without using index structure.

In this technique, data is stored at the data blocks whose address is generated by using the
hashing function. The memory location where these records are stored is known as data

bucket or data blocks.

In this, a hash function can choose any of the column value to generate the address. Most of
the time, the hash function uses the primary key to generate the address of the data block. A
hash function is a simple mathematical function to any complex mathematical function. We
can even consider the primary key itself as the address of the data block. That means each
row whose address will be the same as a primary key stored in the data block.

Data Buckets in Memory

.--""‘A"‘--.
o N
Data Buckets Address Actual datain Memory
Data Records A A
I N 7 N
98 > 98 100 John Delhi
103~ :
106 « 102
104 — 103 103 John Us
: 104 104 Kathrin UP
1
102 J 105 105 Honey China
106 106 Jackson Delhi

120

The above diagram shows data block addresses same as primary key value. This hash
function can also be a simple mathematical function like exponential, mod, cos, sin, etc.
Suppose we have mod (5) hash function to determine the address of the data block. In this
case, it applies mod (5) hash function on the primary keys and generates 3, 3, 1, 4 and 2
respectively, and records are stored in those data block addresses.

Data Buckets in Memory

I
— ™
Data Buckets Actual Data in Memory
Address
Data Records e N
(_/k \ N
ag - 1 106 James Delhi
104 ~ 2 102 Harrv Us
106 - 3 98 Alia UK 103 | Amy | UK
: 4 104 | Jackson | China
|
5
102 ’
6

Types of Hashing:

=3
N

Static] [Dynamic

Hashing Hashing

o Static Hashing
o Dynamic Hashing

Static Hashing

In static hashing, the resultant data bucket address will always be the same. That means if we
generate an address for EMP_ID =103 using the hash function mod (5) then it will always

result in same bucket address 3. Here, there will be no change in the bucket address.

Hence in this static hashing, the number of data buckets in memory remains constant
throughout. In this example, we will have five data buckets in the memory used to store the

data.

https://www.javatpoint.com/dbms-static-hashing
https://www.javatpoint.com/dbms-dynamic-hashing

Data Buckets in Memory

.--"/.\"-\-
- ™~
Data Buckets
Address Actual Data in Memory
Data Records I AL
[\ ~,
98 -~ 1 106 James Delhi
104 ™ r) 102 Kathri us
106 3 98 Alia UK
: 4 104 Jackso | China
|
5
102 d
6

Operations of Static Hashing

o Searchingarecord

When arecord needs to be searched, then the same hash function retrieves the address of the
bucket where the data is stored.

o InsertaRecord

When a new record is inserted into the table, then we will generate an address for a new
record based on the hash key and record is stored in that location.

o Dédetea Record

To delete a record, we will first fetch the record which is supposed to be deleted. Then we
will delete the records for that address in memory.

o Updatea Record

To update a record, we will first search it using a hash function, and then the data record is
updated.

If we want to insert some new record into the file but the address of a data bucket generated
by the hash function is not empty, or data already exists in that address. This situation in the
static hashing is known as bucket overflow. Thisisacritical situation in this method.

To overcome this situation, there are various methods. Some commonly used methods are as
follows:

1. Open Hashing

When a hash function generates an address at which data is already stored, then the next
bucket will be allocated to it. This mechanismis called as Linear Probing.

For example: suppose R3 is a new address which needs to be inserted, the hash function
generates address as 112 for R3. But the generated address is aready full. So the system
searches next available data bucket, 113 and assigns R3 to it.

Data Buckets
107
109
Data Record P —7 110
-)
R3 113
/ 158
New Record
165
2. Close Hashing

When buckets are full, then a new data bucket is allocated for the same hash result and is
linked after the previous one. This mechanism is known as Overflow chaining.

For example: Suppose R3 is a new address which needs to be inserted into the table, the
hash function generates address as 110 for it. But this bucket is full to store the new data. In
this case, anew bucket isinserted at the end of 110 buckets and islinked to it.

Data Buckets

107
109
110 > 110
Data Record 110 r
120
I Cy g
/ 165
New Record
Dynamic Hashing

o The dynamic hashing method is used to overcome the problems of static hashing like
bucket overflow.

o Inthis method, data buckets grow or shrink as the records increases or decreases. This
method is also known as Extendabl e hashing method.

o This method makes hashing dynamic, i.e., it alows insertion or deletion without
resulting in poor performance.

How to search akey

o First, calculate the hash address of the key.
o Check how many bits are used in the directory, and these bits are called asii.

o Take the least significant i bits of the hash address. This gives an index of the
directory.
o Now using the index, go to the directory and find bucket address where the record

might be.

How to insert a new record

o Firstly, you have to follow the same procedure for retrieval, ending up in some
bucket.

o If thereisstill spacein that bucket, then place therecord init.
o If the bucket isfull, then we will split the bucket and redistribute the records.

For example:

Consider the following grouping of keys into buckets, depending on the prefix of their hash
address:

Key Hash address
11010
00000
11110
00000
01001
10101
10111

=] O [N e L] D | =

The last two bits of 2 and 4 are 00. So it will go into bucket BO. The last two bits of 5 and 6
are 01, so it will go into bucket B1. The last two bits of 1 and 3 are 10, so it will go into
bucket B2. The last two bitsof 7 are 11, so it will go into B3.

Data Buckets

Data Records
2 4 B

> 0

00 1 —
01 I 56 B:
L 1 3 B2

11 m\\\
e 7 B3

Insert key 9 with hash address 10001 into the above structure:

o Since key 9 has hash address 10001, it must go into the first bucket. But bucket B1 is
full, so it will get split.

o The splitting will separate 5, 9 from 6 since last three bits of 5, 9 are 001, so it will go
into bucket B1, and the | ast three bits of 6 are 101, so it will go into bucket B5.

o Keys 2 and 4 are still in BO. The record in BO pointed by the 000 and 100 entry
because | ast two bits of both the entry are 00.

o Keys 1 and 3 are still in B2. The record in B2 pointed by the 010 and 110 entry
because last two bits of both the entry are 10.

o Key 7 aredtill in B3. The record in B3 pointed by the 111 and 011 entry because last
two bits of both the entry are 11.

Data Records Data Buckets

000 — 2 4 Bo
001

— 5 9 B1
010 —_
011 - = 1 3 B,
100 /]
101 N 7 Bs
110 A

s 6 Bs

111 P
Advantages of dynamic hashing

o In this method, the performance does not decrease as the data grows in the system. It
simply increases the size of memory to accommodate the data.

o In this method, memory is well utilized as it grows and shrinks with the data. There
will not be any unused memory lying.

o This method is good for the dynamic database where data grows and shrinks
frequently.

Disadvantages of dynamic hashing

o Inthis method, if the data size increases then the bucket size is aso increased. These
addresses of data will be maintained in the bucket address table. This is because the
data address will keep changing as buckets grow and shrink. If there is a huge
increase in data, maintaining the bucket address table becomes tedious.

o Inthis case, the bucket overflow situation will also occur. But it might take little time
to reach this situation than static hashing.

	INTRODUCTION TO DBMS
	CHARACTERISTICS OF DBMS
	DATA BASE USERS
	DBMS ARCHITECTURE

	3- tier Architecture
	DATA MODELS

	Relational Model
	Database Schema
	Database Instance
	Data Independence
	Logical Data Independence
	Physical Data Independence
	Advantages of DBMS
	Reduction of Redundancies:
	Elimination of Inconsistencies:
	SharedData:
	Integrity:
	Security:

	Disadvantages of DBMS
	Cost of software/hardware and migration:
	Problem associated with centralization :
	Complexity of Backup and Recovery:

	APPLICATION OF DBMS:

	Relational Model concept
	Properties of Relations
	o Syntax
	o Example

	Integrity Constraints
	Types of Integrity Constraint
	1. Domain constraints
	2. Entity integrity constraints
	3. Referential Integrity Constraints
	4. Key constraints

	Syntax
	Example
	Syntax (1)
	Example (1)
	Syntax
	Example

	Syntax (2)
	Example (2)
	Syntax (3)
	Example (3)
	The AND Operator
	Syntax
	Example

	The OR Operator
	Syntax
	Example

	Syntax (4)
	Example (4)
	Syntax (5)
	Example (5)

	The join operation denoted by “join” or “⋈”, is a relational algebra operation, which is used to combine (join) two relations like Cartesian-product but finally removes duplicate attributes (same column to only one column) and makes the operations ...
	Example:
	Functional Dependency
	Types of Functional dependency
	1. Trivial functional dependency
	2. Non-trivial functional dependency

	Inference Rule (IR):
	1. Reflexive Rule (IR1)
	2. Augmentation Rule (IR2)
	3. Transitive Rule (IR3)
	4. Union Rule (IR4)
	5. Decomposition Rule (IR5)
	6. Pseudo transitive Rule (IR6)

	Normalization
	Types of Normal Forms

	First Normal Form (1NF)
	Second Normal Form (2NF)
	Third Normal Form (3NF)
	Boyce Codd normal form (BCNF)
	Fourth normal form (4NF)
	Example

	Fifth normal form (5NF)
	Example

	Transaction
	Operations of Transaction:

	Transaction property
	Property of Transaction
	Atomicity
	Consistency
	Isolation
	Durability

	States of Transaction
	Active state
	Partially committed
	Committed
	Failed state
	Aborted

	Schedule
	1. Serial Schedule
	2. Non-serial Schedule
	3. Serializable schedule

	Testing of Serializability
	Precedence graph for schedule S1:
	Precedence graph for schedule S2:

	Conflict Serializable Schedule
	Conflicting Operations
	Example:

	Conflict Equivalent
	Example:

	View Serializability
	View Equivalent
	1. Initial Read
	2. Updated Read
	3. Final Write

	Recoverability of Schedule
	Failure Classification
	1. Transaction failure
	2. System Crash
	3. Disk Failure

	Log-Based Recovery
	1. Deferred database modification:
	2. Immediate database modification:
	Recovery using Log records

	Checkpoint
	Recovery using Checkpoint

	B+ Tree
	Structure of B+ Tree
	Internal node
	Leaf node
	Searching a record in B+ Tree
	B+ Tree Insertion
	B+ Tree Deletion

	File Organization
	Objective of file organization
	Types of file organization:

	Sequential File Organization
	1. Pile File Method:
	Insertion of the new record:
	2. Sorted File Method:
	Insertion of the new record: (1)
	Pros of sequential file organization
	Cons of sequential file organization

	Heap file organization
	Insertion of a new record
	Pros of Heap file organization
	Cons of Heap file organization

	Hash File Organization
	Indexed sequential access method (ISAM)
	Pros of ISAM:
	Cons of ISAM

	Cluster file organization
	Types of Cluster file organization:
	1. Indexed Clusters:
	2. Hash Clusters:
	Pros of Cluster file organization
	Cons of Cluster file organization

	Indexing in DBMS
	Index structure:
	Indexing Methods
	Ordered indices
	Primary Index
	Dense index
	Sparse index
	Clustering Index
	Secondary Index

	Hashing
	Types of Hashing:

	Static Hashing
	Operations of Static Hashing
	1. Open Hashing
	2. Close Hashing

	Dynamic Hashing
	How to search a key
	How to insert a new record
	For example:
	Insert key 9 with hash address 10001 into the above structure:
	Advantages of dynamic hashing
	Disadvantages of dynamic hashing

