
1 | P a g e  

 

DATABASE MANAGEMENT SYSTEM 
B.Com (Computers) - II / III Semester 

 
UNIT-I 
 
The Database Environment: Basic Concepts and Definitions: Data, Information, Metadata, 
Database, DBMS.  Traditional File Processing Systems, the Database Approach, Advantages 
of Database Management System, Components of Database Environment, Types of 
Databases, Risks and Costs of Database. 
 
 

THE DATABASE ENVIRONMENT 
 

 

Data:  
 Data is defined as collection of raw facts about a place, person, thing or object 

involving in the transactions of an organization. 
 Data can be represented in various forms like text, numbers, images, audio, video, 

graphs, document files, etc. 
 Data constitutes the building blocks of information. 
 Data is one of the important assets of the modern business. 
 Data becomes relevant based on the context. 

 

Information 

 

 Information can be defined as processed data that increases the knowledge of end user. 

 Information is used to reveal the meaning of data. 

 Good, accurate and timely information is used in decision making. 

 The quality of data influences the quality of information. 

 Information can be presented in the tabular form, bar graph or an image. 

  

Metadata 
  Metadata is a special data that describes the characteristics or properties of the 

data. 
 Metadata consists of name, data type, length, min, max, description, special 

constraints. 
 Metadata allows the database designers and users understand what data exists and 

what data means. 
  Metadata is generally stored in a repository. 

 
Example for Metadata: 
Name  Type   Length  Description 
Course  alphanumeric  30  course name 
Section  integer  01  section number 
Semester alphanumeric    10  Semester and year    



2 | P a g e  

 

 
Database : 
 

 Database can be defined as organized collection of logically related data. 
 Database can be of any size and complexity. 
 Data are structured so as to be easily stored, manipulated, and retrieved by users. 
 Example: Sales person can store customers contacts on his laptop that consist of 

few mega bytes of data or A big company can store the data of all activities in the 
organization which helps in decision making.. 

 

DBMS: 

 Database management system can be defined as reorganized collection of logically 

related data and set of programs used for creating, storing, updating and retrieval of data 

from the database. 

 DBMS acts as a mediator between end-user and the database.  

 Database management system (DBMS): can be defined as collection of programs 

that manages database structure and controls access to data. 

 DBMS enables data to be shared. 

 DBMS integrates many users’ views of the data. 

 

 

 
 

 
Repository Vs Database: A repository is a centralized storehouse for all data definitions, 
data relationships, and other system components, while a database is an organized 
collection of logically related data. 
 
Data warehouse: An organisation often needs to build a separate database that contains 
historical and summarized information. Such a database is usually called a data warehouse, 
or in some cases a data mart. 
Analysts need specialised decision support tools to query and analyse the database. One class 
of tools used for this purpose is called on-line analytical processing tools (OLAP) 



3 | P a g e  

 

 

Historical Roots:Files and File Systems 
 

• File systems typically composed of collection of file folders, each tagged and kept in 

cabinet 

• Contents of each file folder are logically related 

• Computerized file systems are software that manages data of the organization. 

• Data processing (DP) specialist developed computerized file systems. 

• Each file used its own application program to store, retrieve, and modify data 

• Each file was owned by individual or department that commissioned its creation 

 

 
 

 

Disadvantages of file processing systems 
 
a. Program - Data dependence: 

File descriptions are stored within each application program that accesses a given file. As a 
consequence, any change to a file structure requires changes to the file descriptions for all 
programs that access the file. 
Suppose it is decided to change the customer address field length in the records in a file from 
30 to 40 characters. The file descriptions in each program that is affected would have to be 
modified. It is often difficult to locate all programs affected by such changes.  
 

b. Duplication of data:  

Because applications are often developed independently in file processing systems, 
unplanned duplicate data files are the rule rather than the exception.  This duplication is 
wasteful because it requires additional storage space and increased effort to keep all files up 
to date. Duplicate data files often result in loss data integrity because the data formats may 
be inconsistent or the data values may not agree. For example, the same data item may have 
different names in different files. 
 

 

 

 



4 | P a g e  

 

 

c. Limited data sharing:  

With the traditional file processing approach, each application has its own private files and 
users have little opportunity to share data outside their own applications. It is often 
frustrating to managers to find that a requested report will require a major programming 
effort to obtain data from several incompatible files in separate systems. Data are scattered 
in various files, and the files may be in different formats. Writing new application program 
to retrieve data was difficult. 
 
d. Lengthy development times:  

With the traditional file processing approach, there is little opportunity to leverage the 
previous development efforts. Each new application requires that the developer essentially 
start from scratch by designing new file formats and descriptions. The lengthy development 
times required are often inconsistent with today’s fast-paced business environment. 
 
e. Excessive program maintenance:  

The preceding factors all combine together to create a heavy program maintenance load in 
organizations that rely on traditional file processing systems. As much as 80% of the total 
information systems development budget may be devoted to program maintenance in such 
organizations. This leaves little opportunity for developing new applications. 
 

Database Systems 
 

• Database system consists of logically related data stored in a single logical data 

repository. 

• Database system may be physically distributed among multiple storage facilities 

• DBMS eliminates most of file system’s problems. 

• Current generation stores data structures, relationships between structures, and access 

paths. Also defines, stores, and manages all access paths and components 

 

 

 
  

 



5 | P a g e  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
Data previously stored in separate files have been integrated into a single database structure. 
The DBMS provides the interface between the various database applications for the 
organizational users and the database. The database approach emphasises the integration 
and sharing of data throughout the organisation.  
 
 
Enterprise Data Model: 
 

 
Segment from enterprise data model. 
 
 
Pine Valley Furniture Company’s first step in converting to a database approach was to 
develop a list of the high _level entities that support the business activities of the 
organisation.  
 
An entity is an object that is important to the business. Some of the high-level entities 
identified at Pine Valley Furniture Company are the following: 
 

CUSTOMER 

     ORDER    ORDER 

     LINE 

PRODUCT 

SALES 

DEPARTMENT 

ACCOUNTING 

DEPARTMENT 

PERSONNEL 

DEPARTMENT 

DATABASE  

APPLICATIONS 

 

      DBMS 

  metadata 



6 | P a g e  

 

 CUSTOMER: People and Organisations that buy products from Pine Valley Furniture. 
 ORDER: purchase of one or more products by a customer 
 PRODUCT: The items Pine Valley Furniture Company makes and sells 
 ORDER LINE: Details about each product sold on a particular customer order. 
 

After these entities were identified and defined the company proceeded to develop an 
enterprise data model. An enterprise data model is a graphical model that shows the high-
level entities for the organisation and the associations among those entities. 
 
The 3 associations called relationships shown in figure capture 3 fundamental business 
rules: 

1. Each CUSTOMER places any number of customer ORDERS.   
             Each customer ORDER is placed by exactly one CUSTOMER. 
 

2. Each CUSTOMER ORDER contains any number of ORDERLINES. 
             Each ORDER LINE is contained in exactly one CUSTOMER ORDER. 
 

3. Each PRODUCT has any number of ORDER LINES. 
             Each ORDER LINE is for exactly one PRODUCT 
  
The results of the preliminary studies convinced management of their potential advantage 
of the database approach.  
 
Relational Databases: 
The company decided to implement a modern relational database management system that 
views all data in the form of tables. The four entities represented by enterprise data model 
are converted into tables where each column of a table represents an attribute. 
 
 

ADVANTAGES OF THE DATABASE MANAGEMENT SYSTEM 
 

 
Program – Data Independence: 
The separation of data description from the application programs that use the data is called 
the Data Independence. The Data descriptions are stored in a central location called 
repository. 
 
Minimal Data Redundancy: 
The design goal with the database approach is that previously separate data files are 
integrated into single, logical structure. Each primary fact is recorded in only one place in 
database. The database approach does not eliminate redundancy entirely, but it allows the 
designer to carefully control the type and the amount of the redundancy. 
 
Improved Data Consistency: 



7 | P a g e  

 

By eliminating the data redundancy, the opportunity of reducing the inconsistency has 
increased. For example, if a customer’s address is stored only once, we cannot have 
disagreement on the stored values. We avoid the wasted storage space that results from 
redundant data storage. 
 
Improved Data Sharing: 
A database design is a shared resource of corporate. A user view is logical description of 
some portion of the database that is required by the user to perform some task. The major 
advantage of the database approach is that it greatly reduced the cost and time for 
developing new business applications. 
 
Enforcement of Standards: 
When the database approach is implemented with full management support, the database 
administration function should be granted single point of authority and responsibility for 
establishing and enforcing the data standards. These standards include naming conventions, 
data quality, uniform procedures for accessing, updating and protecting the data. The data 
repository provides database administrators with powerful set of tools for developing and 
enforcing these standards. The DBMS provides an easy to use query language that allows 
users to get immediate response from their queries rather than having to use a specialist 
"programmer" to write queries for them 
 
Improved Data Quality: 
Concern with poor quality of the data is a common theme in the database administration 
today.  Important tool to improve the data quality are:   

1. Database designers can specify integrity constraints that are enforced by the DBMS. 
A constraint is a rule that cannot be violated by the database users. 

2. One of the objectives of a data warehouse environment is to clean up operational data 
before they are placed in the data warehouse. 

 
 

COMPONENTS OF THE DATABASE ENVIRONMENT 
 
     The major components of a typical database environment and their relationships are 
shown below: 
 



8 | P a g e  

 

 
 
 

1. Computer-aided software engineering (CASE) tools: Automated tools are used to 
design the database and application programs.  

 
2. Repository: Centralized storehouse for all data definitions, data relationships, 

screen, report formats and other system components. A repository contains an 
extended set of metadata important for merging databases as well as other 
components of an information system 

 
3. Database Management System (DBMS): A software application that is used to 

define, create, maintain and provide controlled access to database and also to the 
repository. 

 
4. Database: An organized collection of logically related data, usually designed to meet 

the information needs of the multiple needs of multiple users in an organization. It is 
important to distinguish between database and repository. The repository contains 
the definitions of data, where as the database contains the occurrences of data. 

 
5. Application Programs: Computer programs that are used to create and maintain the 

database and provide information to users. 
 
6. User Interface: Languages, Menus and other facilities by which users interact with 

various system components such as CASE tools, application programs, the DBMS, and 
the repository. 

 
7. Data Administrators: Persons responsible for the overall information resources of 

an organization. Data administrators use CASE tools to improve the productivity of 
the database planning and design. 

 



9 | P a g e  

 

8. System Developers: persons such as system analysts and programmers who design 
new application programs. System developers often use CASE tools for the 
requirements analysis and program design. 
 

9. End Users: Persons throughout the organization, who add, delete and modify data in 
the database and who request or receive information from it. All the user interactions 
with the database must be routed through the DBMS. 

 
EVOLUTION OF DATABASES  
 
1960’s 
File processing systems are still dominant during this period. The first database management 
systems were introduced during that decade and were used for large and complex ventures 
such as “APPOLLO moon landing project”. The first efforts of standardization were taken up 
with the formation of data base task group in the late 1960’s 
 
 
 
 
 
 
 
            Traditional Files 
 
1970’s: 
During this decade the use of database management systems became a commercial reality. 
The hierarchical and network database management systems were developed largely to 
cope with increasingly complex data structures such as manufacturing the bills of materials 
that was extremely difficult to manage with conventional file processing methods. The 
network and hierarchical models are generally called as first generation DBMS. 
Major Disadvantages: 
 

1. Difficult access to data, based on navigational record-at-a-time procedures. 
2. Very limited data independence, so that programs are not insulated from changes to 

data formats. 
3. No widely accepted theoretical foundation for either model, unlike the relational data 

model. 
 
 
 
 
 
 
 
 

--------------------

--------------------

--------------------

--------------------

 



10 | P a g e  

 

 
 
 
 
 
 
 

      Hierarchical       Network 
 
1980’s: 
To overcome the above limitations, E.F Codd and others developed the relational data model 
during the 1970’s. The model was considered second generation DBMS, received wide 
spread commercial acceptance and diffusion during the 1980’s. With the relational model, 
all the data were represented in the form of tables. A relatively simple fourth generation 
language called SQL (for Structured Query Language) is used for data retrieval. 
 
 
 
 
 
 
 
 
 
           Relational 
 
 
1990’s: 
This decade started the new era of computing, first with client/server computing, then 
Internet applications became increasingly important. To cope with the increasingly complex 
data, object oriented databases were introduced during the late 1980’s. Since organizations 
must manage a vast amount of both structured and unstructured data, both the relational 
and object-oriented databases are of great importance today. 
 
 
 
 
 
 
 
 
 
 
           Object-oriented       Object-relational 
 
 

  

   ===         === 

   ===         === 

         === 

 == 

== 



11 | P a g e  

 

2000 and Beyond: 
1. The ability to manage increasingly complex data types. These types include 

multidimensional data, which is already assumed of importance in data ware house 
applications. 

2. The continued development of ‘universal servers’ based on object-relational DBMS. 
These are database servers that can manage a wide range of data types transparently 
to users. 

3. Fully distributed databases will become a reality as an organisation will be able to 
physically distribute its databases to multiple locations and update them 
automatically. 

4. Content-addressable storage will become more popular. For example, a user can scan 
a photograph and have the computer search for the closest match to that photo. 

5. Database and other technologies, such as artificial intelligence and television like 
information services will make database access much easier for untrained users. 

 

TYPES OF DATABASES 

 

• Databases can be classified according to: 

– Number of users 

– Database location(s) 

– Expected type and extent of use 

• Single-user database supports only one user at a time 

– Desktop database: single-user; runs on PC 

• Multiuser database supports multiple users at the same time 

– Workgroup and enterprise databases 

• Centralized database: data located at a single site 

• Distributed database: data distributed across several different sites  

• Operational database: supports a company’s day-to-day operations 

– Transactional or production database  

• Data warehouse: stores data used for tactical or strategic decisions 

 

 

RISKS AND COSTS OF THE DATABASE APPROACH 
  
 
New, Specialized Personnel: 
Frequently, organizations that adopt the database approach need to hire or train individuals 
to design and implement databases, provide database administration services and manage a 
staff of new people. The Organization should not minimize the need for these specialized 
skills, which are required to obtain the most from the potential benefits. 
 
Installation and Management Cost and Complexity: 
A multi user database management system is a large and complex suite of software that has 
high initial cost, requires a staff of trained personnel to install and operate, and also has 
substantial annual maintenance and support costs. Installing such a system may also 
required upgrades to the hardware and data communications systems in the organization. 



12 | P a g e  

 

 
Conversion Costs:  The term legacy system is widely used to refer to older applications in 
an organization that are based on the file processing and or older database technology. The 
cost of the converting these older systems to modern systems in terms of dollars, time and 
organizational commitment may often seem prohibitive to an organization. 
 
Need for Explicit Backup and Recovery:  A shared corporate database must be accurate 
and available at all times. This requires that comprehensive procedures be developed and 
used for providing backup copies of data and for restoring database when occurs. 
 
Organizational Conflicts:  A shared database requires a consensus on the data definitions 
and ownership as well as responsibilities for the accurate data maintenance. Handling the 
issues such as conflicts on data definitions, data formats and coding , rights to update the 
shared data and associated issues are frequent which require organizational commitment to 
database approach. 
 



DBMS  UNIT – II 

St Joseph’s Degree & PG College  1  
 

UNIT – II: Entity-Relationship Model 

 

Data Model Definition, Entity Relationship Model Constructs: Entities, Attributes & Relationships, 

Types of entities, Types of Attributes, Types of Relationships, Degree of Relationship: Unary, Binary 

& Ternary. Cardinality Constraints, Examples 

 

Database Model: 

A database model is a type of data model that determines the logical structure of a database and 

fundamentally determines in which manner data can be stored, organized and manipulated. Data 

models define how data is connected to each other and how they are processed and stored inside 

the system. The most popular examples of a database models are the relational model, which uses 

a table-based format ad E-R model. The different data models are: 

 Hierarchical database model 

 Network database model 

 Relational database model 

 Entity Relationship model 

 Object oriented model 

 

Entity-Relationship Model: 

An entity–relationship model (E-R model) is a systematic way of describing and defining a 

business process. An -ER model is typically implemented as a database. The E-R model defines the 

conceptual view of a database, and is based on the notion of real-world entities and relationships 

among them. While formulating real-world scenario into the database model, the E-R Model 

creates entity set, relationship set, general attributes and constraints. 

 

Entity 

An entity can be a real-world object, either animate or inanimate, that can be easily identifiable. 

For example, in a college database, students, teachers, classes, and courses offered can be 

considered as entities. All these entities have some attributes or properties that give them their 

identity. 

 

https://en.wikipedia.org/wiki/Data_model
https://en.wikipedia.org/wiki/Database
https://en.wikipedia.org/wiki/Data
https://en.wikipedia.org/wiki/Relational_model


DBMS  UNIT – II 

St Joseph’s Degree & PG College  2  
 

An entity set is a collection of similar types of entities. An entity set may contain entities with 

attribute sharing similar values. For example, a Students set may contain all the students of a 

college; likewise a Teachers set may contain all the teachers of a college from all faculties. Entity 

sets need not be disjoint. 

Entities are represented by means of rectangles. Rectangles are named with the entity set they 

represent.  

Attributes 

An attribute is a characteristic of an entity. Entities are represented by means of their properties, 

called attributes. All attributes have values. For example, a student entity may have name, class, 

and age as attributes. There exists a domain or range of values that can be assigned to attributes. 

For example, a student's name cannot be a numeric value. It has to be alphabetic. A student's age 

cannot be negative, etc. Attribute can be represented by an oval. 

 

Relationship 

The association among entities is called a relationship. For example, an employee works_at a 

department, a student enrolls in a course. Here, works_at and Enrolls are called relationships. 

Relationship can be represented by diamond shape. 

Relationship Set-A set of relationships of similar type is called a relationship set. Like entities, a 

relationship too can have attributes. These attributes are called descriptive attributes. 

 

Types of Entities 

Weak Entity: Weak entity is an entity that depends on another entity. Weak entity doesn't have 

key attribute (primary key) of their own. In other words, the entity set which does not have 

sufficient attributes to form a primary key is called as Weak entity set. Double rectangle represents 

weak entity. 

   

Strong Entity: An entity which have an independent existence is called strong entity. A strong 

entity set have their primary keys. 

 

 



DBMS  UNIT – II 

St Joseph’s Degree & PG College  3  
 

Types of Attributes: 

 Simple attribute − Simple attributes are atomic values, which cannot be divided further. 

For example, a student's phone number is an atomic value of 10 digits. 

 Composite attribute − Composite attributes are made of more than one simple attribute. 

For example, a student's complete name may have first_name and last_name. 

 Derived attribute − Derived attributes are the attributes that do not exist in the physical 

database, but their values are derived from other attributes present in the database. For 

example, average_salary in a department should not be saved directly in the database, 

instead it can be derived. For another example, age can be derived from data_of_birth. 

 Single-value attribute − Single-value attributes contain single value. For example − 

Social_Security_Number. 

 Multi-value attribute − Multi-value attributes may contain more than one values. For 

example, a person can have more than one phone number, email_address, etc. 

 

Below are the few special case of attributes: 

 Required attribute:-An attribute that must have a value.These attributes does not allow 
NULL values 

 Optional attribute:- An attribute that may or may not have a value. These attributes 
allows NULL values 

 

          Figure 1 

In the above figure the attributes S-No, S-Name, S-Addr, S-DOB are required attributes and 
the attribute S-Phone is an optional attribute. 
 

 Primary Key Attribute(Key Identifier):-  
o One or more attributes that uniquely identify an entity  instance 
o Primary key attributes of an entity are underlined by solid line in ER diagrams. 

 

STUDENT 

S-Name 
S-Addr S-DOB 

S-No 

S-Phone 



DBMS  UNIT – II 

St Joseph’s Degree & PG College  4  
 

o Each entity has only one primary key. 
o It does not allow null values 
o In the above example S-No is a primary key  for STUDENT entity 

 

Type of Relationships: 

A relationship describes an association among entities. For example, a relationship exists between 

customers and agents that can be described as follows: an agent can serve many customers, and 

each customer may be served by one agent.  

The ER Model uses the term connectivity to label the type of relationship. There are three types of 

relationships based on cardinality 

Mapping Cardinalities: Mapping cardinalities defines the association between entities. There are 

different types of relationships. 

1. One-to-one Relationship (1: 1) –One entity from entity set A can be associated with at most 

one entity of entity set B and vice versa. 

   

 Ex: An employee can be head of only one DEPARTMENT. A DEPARTMENT will have one 
and only one HOD 
 
 

 

 

 

 

2. One-to - Many Relationship(1:M):One entity from entity set A can be associated with more 

than one entities of entity set B however an entity from entity set B, can be associated with at 

most one entity. 

 

EMPLOYEE 

 

DEPARTMENT 
HOD 



DBMS  UNIT – II 

St Joseph’s Degree & PG College  5  
 

 

 Ex:- 
 

 

 

 

 The department offers zero or more courses 
 Each course is offered by one and only one department. 

 
3. Many- to - Many Relationship (M: N): One entity from A can be associated with more than 

one entity from B and vice versa. 

 

 Ex:- 
 

 

 

A customer may purchase one or more products. 

 

DEPARTMENT 

 

 

COURSE Offer

s 

 

CUSTOMER 

 

 

PRODUCT 
Purchases 

 



DBMS  UNIT – II 

St Joseph’s Degree & PG College  6  
 

 A product can be purchased by more than one customer. 
Degree of Relationship: The number of participating entities in a relationship defines the degree 

of the relationship. 

There are different types of relationships based on the degree of relationship. 

1. Unary Relationship (Recursive Relationship) - In unary relationship the entity has 
relationship with itself. It is also called recursive relationship. Unary relationship is with degree 
1. 

Ex: 

 

 Each employee is managed by only one manager. 
 

2. Binary Relationship:-A binary relationship exists when two entities are associated in a 

relationship. A binary relationship can be weak or strong based on the participating entities. 

Binary relationship is with degree 2. 

 Ex:- 
 

 

 

 Each customer can purchase one or more products. 
 Each product can be purchased by more than one  

 
3. Ternary relationship: -A simultaneous relationship that exists between instances of three 

entities is called ternary relationship. Ternary relationship is with degree 3. 
Ex: 

 

 

 

 

 

EMPLOYEE 

 

Manager 

 

CUSTOMER 

 

 

PRODUCT 
Purchases 

 

 

DOCTOR 

 

 

PATIENT 

DRUG 

 
Prescriptio

n 

Pres_Date 



DBMS  UNIT – II 

St Joseph’s Degree & PG College  7  
 

 
 A Doctor writes one or more prescriptions. 
 A Patient may receive one or more prescriptions. 
 A Drug may appear in one or more prescriptions. 
 Prescription is an associative entity since many-to-many relationships exist between 

participating entities. 

4. N-ary relationship: A relationship type of degree n is called n-ary relationship.  

Ex:N-ary relationship – A student takes a course from a teacher at a particular time slot. 

 

Entity-Set and Keys 

Key is an attribute or collection of attributes that uniquely identifies an entity among entity set. 

For example, the roll_number of a student makes him/her identifiable among students. 

 Super Key − A set of attributes (one or more) that collectively identifies an entity in an 

entity set. 

 Candidate Key − A minimal super key is called a candidate key. An entity set may have more 

than one candidate key. 

Existence Dependence: 

 An entity is said to be existence dependent if it can exist in the database only when it is 
associated with another entity occurrence. 

  In implementation terms, an entity is existence dependent if it has a mandatory foreign 
key.  

  If an entity can exist apart from one or more related entities then it is referred as 
existence-independent.  
 

 



DBMS  UNIT – II 

St Joseph’s Degree & PG College  8  
 

 Ex:-  

 

 

 

 In the above example the entity DEPENDENT is existence dependent on the entity 
EMPLOYEE. 

E-R Diagram 

ER-Diagram is a visual representation of data that describes how data is related to each other.Here 
are the geometric shapes and their meaning in an E-R Diagram – 

 

 

 

EMPLOYEE 

 

 

DEPENDENT Has 



DBMS  UNIT – II 

St Joseph’s Degree & PG College  9  
 

 

  

Sample E-R Diagrams: 

  

Multivalued Attributes: E.g. A person can have more than one phone numbers so the phone 
number attribute is multivalued. 



DBMS  UNIT – II 

St Joseph’s Degree & PG College  10  
 

  

Derived Attribute:  E.g. Person age is a derived attribute as it changes over time and can be 
derived from another attribute (Date of birth). 

  

Key Attribute: Key attribute represents the main characteristic of an Entity. It is used to 

represent Primary key. Ellipse with underlying lines represent Key Attribute 

  

Composite attribute: An attribute can also have their own attributes. These attributes are known 

as Composite attribute. 

 



DBMS  UNIT – II 

St Joseph’s Degree & PG College  11  
 

  

 

Ex: Strong Entity and Weak Entity 

 

 In the above example the entity EMPLOYEE has an attribute E-id that can qualify as 

primary key therefore it is a strong entity. 

 The entity DEPENDENT  is not possessing any attribute that can  qualify as a primary key 

therefore it is a weak entity 

  As per the relational Database rules every entity should possess a primary key therefore 

primary key for DEPENDENT entity was build  using the primary key of EMPLOYEE entity.  

 

 

 

             Employee HAS 

E-id 

E-name 
E-add D-Name 

D-age 

 

DEPENDENT 



DBMS      Unit-III    

 

1 

St.Joseph’s Degree & PG College 

 

UNIT -III 

NORMALIZATION 

 

Normalization:- Normalization is a process for evaluating and correcting table’s 

structures to minimize data redundancy thereby avoiding the occurring of data anomalies. 

Database Normalization is a technique of organizing the data in the database. Normalization is 

a systematic approach of decomposing tables to eliminate data redundancy and thereby 

avoiding data anomalies like Insertion, Update and Deletion. It is a multi-step process that 

puts data into tabular form by removing duplicated data from the relation tables. 

 

Need for Normalization 

 To minimize data redundancy 

 To avoid data anomalies resulting during insert, update or delete operations. 

 

The Normalization Process 

 The objective of normalization is to ensure that each table conforms to the concept 

of well defined relations that satisfy the following characteristics 

o Each table represents a single subject 

o No data item will be unnecessarily stored in more than one table. 

o All nonprime attributes in a table are dependent on the primary key. 

o Each table should not exhibit insert, update and delete anomalies.     

 Normalization process takes us through the steps that lead us through normal form 

to accomplish the above objective.  

Key: A key is a single or combination of multiple fields (attributes). Its purpose is to 
access or retrieve data rows from table according to the requirement. The keys are 

defined in tables to access or sequence the stored data quickly and smoothly.  

 

 

Types of Keys: 

Primary Key The attribute or combination of attributes that uniquely identifies a row or 

record in a relation is known as primary key. There can be more than one candidate key 

in a relation out of which one can be chosen as primary key. 

 



DBMS      Unit-III    

 

2 

St.Joseph’s Degree & PG College 

 

Ex: For Employee table EMPLOYEE_ID is uniquely identify all the records (tuples) in the 

table. 

 

 

Candidate Key (Alternate key):  The minimal set of attribute which can uniquely 

identify a record/tuple is known as candidate key. A relation can have only one primary 

key. The fields or combination of fields that are not used as primary key are known as 

candidate key or alternate key. 

 

Ex: an employee is identified by his ID in his office. Apart from his ID, he has passport 

number, PAN number, SSN number (if applicable), driving license number, email address 

etc. These are also identifies specific person uniquely. But we can choose any one of these 

unique attribute as primary key in the table. Rest of the attributes, which holds as strong 

as primary key are considered as Candidate key/secondary key. In our example of 

employee table, EMPLOYEE_ID is best suited for primary key. Rest of the attributes like 

passport number, SSN, license Number etc., are considered as candidate key. 

 

Composite key: A primary key that consists of two or more attributes is known as 

composite key. 

Ex:  {EMP_PASSPORT_NUM, SSN} of Employee table 



DBMS      Unit-III    

 

3 

St.Joseph’s Degree & PG College 

 

   {STUD_NO, COURSE_NO} is a composite candidate key for relation 

STUDENT_COURSE. 

 

Super key: A super key is a combination of attributes that can be uniquely identify 

a database record. A table might have many super keys. Candidate keys are a 

special subset of super keys that do not have any extraneous information in them. 

A candidate key is a super key but vice versa is not true. 

 

Ex: Imagine a table with the fields <Name>, <Age>, <SSN> and <Phone Extension>. 

This table has many possible super keys. Three of these are <SSN>, <Phone Extension, 

Name> and <SSN, Name>. Of those listed, only <SSN> is a candidate key, as the others 

contain information not necessary to uniquely identify records. 

 

Foreign Key A foreign key is an attribute or combination of attributes in a relation whose 

value match a primary key in another relation. The table in which foreign key is created is 

called as dependent/child table. The table to which foreign key is refers is known as 

foreign/parent table. 

 

Ex: An employee, who works for a company, works in specific department. So that 

employee and department are two different entities. We link these two tables by means of 

primary key of one of the table i.e.; in this case, we pick the primary key of department 

table - DEPARTMENT_ID and add it as a new attribute/column in the Employee table. Now 

DEPARTMENT_ID is a foreign key for Employee table, and both the tables are related! 

 

Functional Dependency: - The attribute B is fully functionally dependent on attribute A 

if each value of A determines one and only one value of B. 



DBMS      Unit-III    

 

4 

St.Joseph’s Degree & PG College 

 

 Ex: Proj_num   Proj_Name – In this example Proj_num functionally determines 

Proj_Name. 

Proj_Num is known as determinant attribute 

Proj_Name is known as dependent attribute 

 

 Fully Functional Dependency:  If the non-key attributes depending fully on entire 

primary key then it is fully functional dependent. 

 Partial Dependency: If the non-key attributes are partially depending on primary key 

then it is partial functional dependent. 

 Transitive Dependency: When attribute A is depending on attribute B and B is 

depending on C then there exists transitive dependency between A, B & C. 

 

Normal form:- Normalization works through a series of stages called normal form. 

Following are the different normal forms:- 

 First normal form(1NF) 

 Second normal form(2NF) 

 Third normal form(3NF)  

 Boyce Codd normal form(BCNF) 

 Fourth normal form(4NF) 

 

First Normal Form(1NF) : As per First Normal Form, no two Rows of data must contain 

repeating group of information i.e each set of column must have a unique value, such that 

multiple columns cannot be used to fetch the same row. 

 It is performed by the three steps 

1. Eliminate the repeating groups. 

2. Identifying the primary key 

3. Identify all the functional dependencies 

Ex: 



DBMS      Unit-III    

 

5 

St.Joseph’s Degree & PG College 

 

  

 The primary  key for the above table was made up of attributes  

            (PROJ_NUM, EMP-NUM) 

  Functional dependencies:- 

1.  (PROJ_NUM, EMP-NUM  )  NO_HOUR 

2. EMP-ID  ENAME,JOB,CHG_HRS 

3. PROJ_NUM PROJ_NAME   

4. JOB CHG_HRS 

 The attribute  CHG-HRS  is  depending functionally on JOB and JOB is depending on 

EMP-ID then we can say transitive dependence exist between EMP-ID, JOB &  CHG-

HOUR   

 

Second Normal Form(2NF):- 

 A relation or a table is in second normal form if it is satisfies the following 

conditions 

o  In should be in first normal from(1NF) 

o  Every non-key attribute should fully functionally dependent on the primary 

key. 

 If any relation or table is not satisfying the above conditions it is said not to be 2NF 

and the following steps are to convert the relation into the second normal form:- 



DBMS      Unit-III    

 

6 

St.Joseph’s Degree & PG College 

 

o Step:-1 write each key component on a separate line. 

o Step:-2 Assign corresponding dependent attributes 

o Step3: create a separate table for each determinant and its dependencies. 

Ex:- 

The above table is not 2NF as it is not satisfying rule-2 i.e. the attributes ENAME, JOB, 

CHG_HRS, PROJ_NAME are exhibiting partial dependencies. The table is restructured by 

following the above three steps. The resultant tables are 

 

 

 

Third Normal Form(3NF):- 

 A relation is in third normal form (3NF) if it satisfies the following conditions. 

1. The relation should be in 2 NF 

2. Transitive dependency between the attributes should not exist. 

 If a table is in 2 NF and it exhibits transitive dependency it can be corrected by the 

following steps 

1. Step1:- Identify each new determinant 

2. Step2:- Identify the dependent attribute 



DBMS      Unit-III    

 

7 

St.Joseph’s Degree & PG College 

 

3. Step3:- Remove the dependent attribute from the table and construct new 

table with determinant and the dependents. 

Ex:- 

EMPLOYEE 

EMP-ID   ENAME JOB CHG-HRS   

 

 

 The above table is in 2NF  

  In the EMPLOYEE table The attribute  CHG-HRS  is  depending functionally on JOB 

and JOB is depending on EMP-ID then we can say transitive dependence exist 

between EMP-ID, JOB &  CHG-HRS   

  So the above table is corrected  by  following the above steps .the resultant tables 

are 

 

 

THE BOYCE-CODD NORMAL FORM (BCNF) 

 A table is in Boyce-Codd Normal Form (BCNF) when every determinant in the table 

is a candidate key. 

 When a table contains only one candidate key then 3NF and BCNF are equivalent. 

 When a table contains more than one candidate key then the table need to be 

corrected so that it contains only one candidate key. 



DBMS      Unit-III    

 

8 

St.Joseph’s Degree & PG College 

 

 Ex:- 

The attributes A & B together form a primary key. But it is identified that the non key 

attribute C is determining the attribute B which is the part of primary key. The entity has 

two candidate keys hence not in BCNF.  

 

The above entity is corrected using the following steps: 

 Create a table that contains attributes (A, C, D) i.e the part of primary key, new 

candidate key and other non key attribute. 

 Create the second table that contains (C,B) i.e. the new candidate key and its           

dependent. 

 

 



DBMS      Unit-III    

 

9 

St.Joseph’s Degree & PG College 

 

 

Denormalization: 

The problem with normalization is that as tables are decomposed to conform to 

normalization requirements, the number of database tables expands. Therefore, in order 

to generate information, data must be put together from various tables. Joining a large 

number of tables takes additional input/output (I/O) operations and processing logic, 

thereby reducing system speed. Most relational database systems are able to handle joins 

very efficiently. However, rare and occasional circumstances may allow some degree of 

denormalization so processing speed can be increased. 

 

Denormalization is the process of taking a normalized database and modifying table 

structures to allow controlled redundancy for increased database performance. 

 

1. It is a strategy which involves adding redundant data to a normalized database to 

reduce certain types of problems with database queries that combine data from 

various tables into a single table.  

2. In many cases, denormalization involves creating separate tables or structures so 

that queries on one piece of information will not affect any other information tied to 

it. 

3. The basic criteria for denormalization would be- 

  It should reduce the frequency of joins between the tables, and hence making the 

query faster. 

  Most of the cases, when we have joins on tables, full table scan is performed to 

fetch the data. Hence if the tables are huge, we can think of denormalization. 

  The column should not be updated more frequently. Also the column should very 

small to get rejoined with the table. Huge columns are again overhead to the 

table and cost of performance. 

 The developer should have very good knowledge of data, when he denormalizes it. 

He should know very clearly about all the factors, frequency of joins / access, 

updates, column and table size etc. 

 

 



DBMS      Unit-III    

 

10 

St.Joseph’s Degree & PG College 

 

Methods of Denormalization:  

1. Adding redundant columns- we can add redundant columns to eliminate frequent 

joins. 

2. Adding Derived columns- it can help to eliminate joins and reduce the time needed 

to produce aggregate values. 

3. Combining tables- Collapsing the two tables into one can improve performance by 

eliminating the join. 

4. Repeating groups- These can be stored as nested table within the original table. 

5. Creating extract tables- It allow users to access extract table directly. 

6. Partitioning relations- Instead of combining relations together, decompose them 

into a number of smaller and more manageable partitions. 

 

Ex: Adding columns - In this method, only the redundant column which is frequently used 

in the joins is added to the main table. The other table is retained as it is. 

For example, consider EMPLOYEE and DEPT tables.  Suppose we have to generate a report 

where we have to show employee details and his department name. Here we need to 

have join EMPLOYEE with DEPT to get department name. 

 

4. SELECT e.EMP_ID, e.EMP_NAME, e.ADDRESS, d.DEPT_NAME 

5. FROM EMPLOYEE e, DEPT d 

6. WHERE e.DEPT_ID = d.DEPT_ID; 

 



DBMS      Unit-III    

 

11 

St.Joseph’s Degree & PG College 

 

 

But joining the huge EMPLOYEE and DEPT table will affect the performance of the query. 

But we cannot merge DEPT with EMPLOYEE. At the same time, we need to have a 

separate DEPT table with many other details, apart from its ID and Name. In this case, 

what we can do is add the redundant column DEPT_NAME to EMPLOYEE, so that it avoids 

join with DEPT and thus increasing the performance. 

 

 

SELECT e.EMP_ID, e.EMP_NAME, e.ADDRESS, e.DEPT_NAME 

FROM EMPLOYEE e; 

 

Now no need to join with DEPT to get the department name to get details. But it creates a 

redundancy of data on DEPT_NAME. 

 

Advantages of Denormalization:  

 Obviously, the biggest advantage of the denormalization process is increased 

performance.  

 It makes retrieval of data easier to express and perform. 

 Minimizing the need for joins. 

 Reducing the no.of relations. 



DBMS      Unit-III    

 

12 

St.Joseph’s Degree & PG College 

 

 Sometimes it makes the database easier to understand. 

Disadvantages of Denormalization:  

 It may speed up retrievals but can slow down updates. 

 Increases the size of relations. 

 It needs to be reevaluated in the application changes. 

 It reduces flexibility. 

 More disk space is required. 

 Additional coding knowledge is required. 

 

Benefits of Normalization 

Normalization provides numerous benefits to a database. Some of the major benefits 

include the following: 

 Greater overall database organization 

 Reduction of redundant data 

 Data consistency within the database 

 A much more flexible database design 

 A better handle on database security 

Codd's Rules:  

 E.F Codd was a Computer Scientist who invented Relational model for Database 

management. Based on relational model, Relation database was created.  

 Codd proposed 13 rules popularly known as Codd's 12 rules to test DBMS's 

concept against his relational model.  

 Codd's rule actually define what quality a DBMS requires in order to become a 

Relational Database Management System (RDBMS).  

 Till now, there is hardly any commercial product that follows all the 13 Codd's rules. 

Even Oracle follows only eight and half out (8.5) of 13.  

The Codd's 12 rules are as follows: 

Rule 0: 

This rule states that for a system to qualify as an RDBMS, it must be able to manage 

database entirely through the relational capabilities. 



DBMS      Unit-III    

 

13 

St.Joseph’s Degree & PG College 

 

 

Rule 1: Information rule 

All information (including metadata) is to be represented as stored data in cells of tables. 

The rows and columns have to be strictly unordered. 

 

Rule 2: Guaranteed Access 

Each unique piece of data (atomic value) should be accessible by: Table Name + 

primary key (Row) + Attribute (column). 

NOTE: Ability to directly access via POINTER is a violation of this rule. 

 

Rule 3: Systematic treatment of NULL 

Null has several meanings, it can mean missing data, not applicable or no value. It should 
be handled consistently. Primary key must not be null. Expression on NULL must give 

null. 

 

Rule 4: Active Online Catalog 

Database dictionary (catalog) must have description of Database. Catalog to be governed 
by same rule as rest of the database. The same query language to be used on catalog as 

on application database. 

 

Rule 5: Powerful language 

One well defined language must be there to provide all manners of access to data. 

Example: SQL. If a file supporting table can be accessed by any manner except SQL 

interface, then it’s a violation to this rule. 

 

Rule 6: View-Updation rule 

All view that are theoretically updatable should be updatable by the system. 

 

Rule 7: Relational Level Operation 

There must be Insert, Delete, and Update operations at each level of relations. Set 

operation like Union, Intersection and minus should also be supported. 



DBMS      Unit-III    

 

14 

St.Joseph’s Degree & PG College 

 

 

Rule 8: Physical Data Independence 

The physical storage of data should not matter to the system. If say, some file supporting 

table were renamed or moved from one disk to another, it should not affect the 

application. 

 

Rule 9: Logical Data Independence 

If there is change in the logical structure (table structures) of the database the user view 

of data should not change. Say, if a table is split into two tables, a new view should give 

result as the join of the two tables. This rule is most difficult to satisfy. 

 

Rule 10: Integrity Independence 

A database must be independent of the application that uses it. The database should be able 

to conforce its own integrity rather than using other programs. Key and Check constraints, 

trigger etc. should be stored in Data Dictionary. This also make RDBMS independent of 

front-end. 

 

Rule 11: Distribution Independence 

A database should work properly regardless of its distribution across a network. This lays 

foundation of distributed database. 

 

Rule 12: Non-subversion rule 

If low level access is allowed to a system it should not be able to subvert or bypass 

integrity rule to change data. This can be achieved by some sort of looking or encryption. 



SQL Introduction    Unit - IV 
 

St.Joseph’s Degree&PG College  1 
 

UNIT IV - Introduction to SQL 
 

Unit IV: Introduction, SQL Environment, Data Definition Commands: Create, Alter, 

Drop, Truncate. Data Integrity Controls: Primary Key Constraint, Unique Key Constraint, 

Not Null Constraint, Foreign Key Constraint, Check Constraint. Data Manipulation 

Commands: Insert, Update, Delete. Data Control Commands: Commit, Rollback. SQL 

Operators: Arithmetic, Logical, Relational and Special Operators. 

 

Introduction: 

 SQL (Structured Query Language) is a language that provides an interface to relational 

database systems. 

 SQL was developed by IBM in 1970s for use in System R. 

 SQL is an ANSI (American National Standards Institute) standard 

 SQL is used to perform all type of data operations in RDBMS. 

 

Features of SQL: 

 SQL can be easily used by a range of users with little or no knowledge of programming. 

 It is a non-procedural language 

 It reduces the amount of time required for modifying SQL statements. 

 It is an English like language and easy to understand. 

 

SQL Environment: When you are executing an SQL command for any RDBMS, the 

system determines the best way to carry out your request and SQL engine figures 

out how to interpret the task. There are various components included in this process. 

These components are − 

1. Query Dispatcher: The function of the Dispatcher is to route the query request to either 

CQE (classic Query engine) or SQE (SQL Query Engine), depending on the attributes of the 

query. All queries are processed by the Dispatcher and you cannot bypass it. 



SQL Introduction    Unit - IV 
 

St.Joseph’s Degree&PG College  2 
 

2. Optimization Engines: The Query optimizer determines the most efficient way to execute 

a SQL statement after considering many factors including the Optimizer Goal. The output 

from the optimizer is an execution plan that describes an optimum method of execution.  

3. Classic Query Engine (CQE):A classic query engine handles all the non-SQL queries, but 

a SQL query engine won't handle logical files. 

4. SQL Query Engine (SQE): It is an execution engine for actually evaluating the query. 

Implements data access, both reading and writing, for a relational database, in a way 

that can be controlled by a user's SQL queries. 

 

Following is a simple diagram showing the SQL Architecture – 

 
 

Table: 

The data in an RDBMS is stored in database objects which are called as tables. This 

table is basically a collection of related data entries and it consists of numerous columns 

and rows. Remember a table is the most common and simplest form of data storage 

in a relational database. The following program is an example of a CUSTOMERS table  

+----+----------+-----+-----------+----------+ 

| ID | NAME     | AGE | ADDRESS   | SALARY   | 

+----+----------+-----+-----------+----------+ 

|1|Ramesh|32|Ahmedabad|2000.00| 

https://gerardnico.com/wiki/relation/engine/goal
https://gerardnico.com/wiki/relation/engine/execution_plan


SQL Introduction    Unit - IV 
 

St.Joseph’s Degree&PG College  3 
 

|2|Khilan|25|Delhi|1500.00| 

|3| kaushik|23|Kota|2000.00| 

|4|Chaitali|25|Mumbai|6500.00| 

|5|Hardik|27|Bhopal|8500.00| 

|6|Komal|22| MP        |4500.00| 

+----+----------+-----+-----------+----------+ 

 

Field or Column: 

Every table is broken up into smaller entities called fields(also called as attributes).A 

field is a column in a table that is designed to maintain specific information about every 

record in the table. The fields in the CUSTOMERS table consist of ID, NAME, AGE, 

ADDRESS and SALARY. 

Record or a Row: 
A record is also called as a row of data is each individual entry that exists in a table. 

For example, there are 7 records in the above CUSTOMERS table.  

 

SQL Commands 

 SQL commands are instructions used to communicate with the database to perform 

specific task that work with data. 

 SQL commands can be used not only for searching the database but also to perform 

various  other functions like, for example, you can create tables, add data to tables, or 

modify data, drop the table, set permissions for users.  

 SQL commands are grouped into four major categories depending on their functionality: 

 

1. Data Definition Language (DDL) - These SQL commands are used for creating, 

modifying, and dropping the structure of database tables. The commands are CREATE, 

ALTER, DROP, RENAME, and TRUNCATE. 

 



SQL Introduction    Unit - IV 
 

St.Joseph’s Degree&PG College  4 
 

2. Data Manipulation Language (DML) - These SQL commands are used for storing, 

retrieving, modifying, and deleting data. These commands are SELECT, INSERT, 

UPDATE, and DELETE. 

 

3. Transaction Control Language (TCL) - These SQL commands are used for managing 

changes affecting the data. These commands are COMMIT, and ROLLBACK. 

 

4. Data Control Language (DCL) - These SQL commands are used for providing security 

to database objects. These commands are GRANT and REVOKE. 

 

Data Definition Language (DDL)- These SQL commands are used for creating, 

modifying and dropping the structure of database tables. The commands are: 

CREATE, ALTER, DROP, RENAME, and TRUNCATE. 

 

1. Create Statement: This command is used for creating the structure of a table; Using this 

command we specify the details like name of the column, datatype, size and constraints 

 

Syntax:- Create table table-name(columnname1 datatype(size) constraint, columname2 

datatype(size), ..); 

Eg: Question: Create a table with the following fields 

 EMPLOYEES (Employee_Id, First_Name, Last_Name, Email, Phone_Number, Hire_Date,  

Job_Id, Salary, Commission_Pct, Manager_Id, Department_Id) 

 

Ans:- Create table EMPLOYEES(Employee_Id number(4) primary key , First_Name 

varchar2(20) not null, Last_Name varchar2(20) not null, Email varchar2(40) unique, 

Phone_Number number(10), Hire_Date date not null, Job varchar2(20) not null, Salary 

number(10,2) not null , Commission_Pct number(3), Manager_Id number(4) references 

EMPLOYEES(Employee_Id), Department_Id number(2)); 

1. Alter Statement: 

2. Alter statement: This command is used for changing the structure of a table. 

 Using this command we can add a new constraint or a new column to table. 

 We can also modify the datatype and size of the column. 



SQL Introduction    Unit - IV 
 

St.Joseph’s Degree&PG College  5 
 

 We can increase the size of a column but not decrease. 

 

Syntax: Alter table table-name add/modify(column-name datatype(size)); 

 

Eg1: Adding a column to the table. 

Question: Add a column called Grade which takes only “A” or “B” or “C” 

Ans: - SQL> alter table faculty add(grade varchar2(1),check(grade in('A','B','C'))); 

Eg2: Modifying the size of a column in the table. 

Question: Increase the size of the column fname from 10 to 20 

Ans:-  SQL> alter table faculty modify(fname varchar2(20)); 

 

3. Drop statement: This command is used for deleting the table structure permanently from 

the database. When this command is used the data present in the table and the structure of 

table is deleted permanently from the database. 

Syntax: drop table table-name; 

Eg:- delete table student from the database 

 SQL> drop table student; 

 

4. Rename Statement: This command is used for changing the name of a table. 

Syntax: Rename tablename to newtablename; 

Eg:- Change the name of table student to newstudent 

Ans:- SQL> rename student to newstudent; 

 

5. Truncate: 

 This command is used for permanently deleting complete data present in the table. 

 The structure of the table is retained. 

Syntax: SQL>TRUNCATE TABLE  table_name; 

Eg:- Delete the data present in Student table. 

Ans:- SQL>truncate  table student; 

 

 

 



SQL Introduction    Unit - IV 
 

St.Joseph’s Degree&PG College  6 
 

Data Manipulation Language (DML) 

 These SQL commands are used for storing, retrieving, modifying, and deleting 

data.  

 These commands are INSERT, UPDATE, DELETE and SELECT. 

 After using DML commands we need to use commit statement to save the 

changes permanently in the table. 

1. Insert: 

 The SQL INSERT Statement is used to add a new row of data into a table in the database. 

 There are two basic syntaxes of INSERT statement as follows: 

 

Inserting data for required fields only 

Syntax:- 

 INSERT INTO TABLE_NAME (column1, column2, column3,...columnN)] 

 VALUES (value1, value2, value3,...valueN); 

Here, column1, column2,...columnN are the names of the columns in the table into which you 

want to insert data. 

 

Inserting data into all the columns: 

Syntax:- 

INSERT INTO TABLE_NAME VALUES (value1,value2,value3,...valueN); 

 

Example: Inserting data for specified columns into customer table 

 INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY) 

VALUES (1,'Ramesh',32,'Ahmedabad',2000.00); 

 

We need not specify the column(s) name in the SQL query if we are adding values for all the 

columns of the table.But make sure the order of the values is in the same order as the 

columns in the table.  

 

INSERT INTO CUSTOMERS (ID,NAME,AGE,ADDRESS,SALARY) 

VALUES (1,'Ramesh',32,'Ahmedabad',2000.00); 

 



SQL Introduction    Unit - IV 
 

St.Joseph’s Degree&PG College  7 
 

Example: Inserting data into customer table 

INSERT INTO CUSTOMERS VALUES (2,'Khilan',25,'Delhi',1500.00); 

 

2. Update: 

 The update query is used to change/modify/insert the data of a table for existing records. 

 The UPDATE statement allows you to update a single record or multiple records in a table. 

Syntax: UPDATE table SET column = newvalue WHERE condition; 

Example: update all supplier names in the suppliers table from IBM to HP. 

SQL>UPDATE suppliers SET name = 'HP' WHERE name = 'IBM'; 

 

3. Delete: 

 The SQL DELETE Query is used to delete the existing records from a table. 

 You can use WHERE clause with DELETE query to delete selected rows, otherwise all the 

records would be deleted. 

Syntax: DELETE FROM table_name WHERE [condition]; 

Example1: delete all the records of employee table 

Ans:           Delete from employee; 

 

Example2: delete only specified records. 

Delete the employee whose salary is greater than 2000. 

Ans:           Delete from emp where sal>2000; 

 

4. Select Statement 

 SQL SELECT statement is used to fetch the data from a database table which returns 

data in the form of result table.  

 These result tables are called result-sets. 

 A query may retrieve information from specified columns or from all of the columns in 

the table.  

Syntax of SQL SELECT Statement - global selection) 

SELECT column_list FROM table_name 

[WHERE Clause] 

[GROUP BY clause] 



SQL Introduction    Unit - IV 
 

St.Joseph’s Degree&PG College  8 
 

[HAVING clause] 

[ORDER BY clause]; 

 table-name is the name of the table from which the information is retrieved. 

 column_list includes one or more columns from which data is retrieved. 

 The code within the brackets is optional. 

 FROM table-name clause of select statement is used for specifying the source tables from 

which data need to be retrieved. 

 [WHERE Clause] is used for filtering the data according to the given criteria 

 [GROUP BY clause] is used for grouping the data according to the given column 

 [HAVING clause] is used to apply filter on the rows obtained after group by clause.  

 [ORDER BY clause] is used to sort the data in ascending or descending order according to 

the given column. 

 The different forms of select query: 

1. Select Specified columns and all rows: 

Q: display the employ number, ename and department of employee table 

Ans: SQL> select empid, ename, dept from employee; 

 

2. Select all columns and specified rows: 

Q: display the details of employees whose salary is greater than 20000 

Ans: SQL> select * from employee where salary > 20000 

 

3. Select Specified columns and specified rows: 

Q: display employee id and name whose dept is “sales” 

Ans: SQL> select empid,ename from employee where dept = ‘sales’; 

 

4. Select all columns and all rows: 

Q: display all the records of employee table 

Ans: SQL> select * from employee; 

 

Example1: Display the names of employees who salary is more than 4000. 

      SQL>select ename from emp where sal>4000; 

 



SQL Introduction    Unit - IV 
 

St.Joseph’s Degree&PG College  9 
 

Example 3: Display employee details for employee in ascending order of their salary. 

SQL> select * from emp where empid = 10; 

 

Data Constraints: 

 Constraints are the rules enforced on the data columns of a table.  

 These are used to limit the type of data that can go into a table. This ensures the accuracy 

and reliability of the data in the database. 

 Constraints could be either on a column level or a table level. The column level constraints 

are applied only to one column, whereas the table level constraints are applied to more than 

one column. 

 Following are some of the most commonly used constraints available in SQL.  

 Constraints can be specified when a table is created with the CREATE TABLE statement or 

you can use the ALTER TABLE statement to create constraints even after the table is 

created. 

 

NOT NULL Constraint – 

NOT NULL constraint restricts a column from having a NULL value.  

Once NOT NULL constraint is applied to a column, you cannot pass a null value to that column. 

It enforces a column to contain a proper value.  

One important point to note about NOT NULL constraint is that it cannot be defined 

at table level. 

Example: NOT NULL constraint on student table 

Create table student (rollnum number(6) NOT NULL, sname char(20), age 

number(3)); 

The above query will declare that the rollnum field of Student table will not take NULL value. 

 

UNIQUE Constraint – 

 UNIQUE constraint ensures that a field or column will only have unique values i.e each 

value if different from other values. 

 A UNIQUE constraint field will not have duplicate data.  

 UNIQUE constraint can be applied at column level or table level. 

 

https://www.tutorialspoint.com/sql/sql-not-null.htm
http://www.studytonight.com/dbms/sql-constraints
http://www.studytonight.com/dbms/sql-constraints
http://www.studytonight.com/dbms/sql-constraints
http://www.studytonight.com/dbms/sql-constraints
http://www.studytonight.com/dbms/sql-constraints
http://www.studytonight.com/dbms/sql-constraints
https://www.tutorialspoint.com/sql/sql-unique.htm
http://www.studytonight.com/dbms/sql-constraints
http://www.studytonight.com/dbms/sql-constraints
http://www.studytonight.com/dbms/sql-constraints
http://www.studytonight.com/dbms/sql-constraints
http://www.studytonight.com/dbms/sql-constraints


SQL Introduction    Unit - IV 
 

St.Joseph’s Degree&PG College  10 
 

 

Example1: UNIQUE constraint when creating a Table (column level) 

SQL>CREATE table student (Rollnum number(3) UNIQUE, Sname char(20), Age 

number(3)); 

 

The above query will declare that the rollnum field of Student table will only 

have unique values and won’t take NULL value. 

 

Example2:UNIQUE constraint when creating a Table (Table Level) 

SQL>CREATE table student (Rollnum number(3), Sname char(20), Age number(3), 

UNIQUE(Rollnum)); 

Example3: UNIQUE constraint after Table is created (Column Level) 

SQL> ALTER table student add UNIQUE(rollnum); 

 

PRIMARY Key – 

 Primary key constraint uniquely identifies each record in a database.  

 A Primary Key must contain unique value and it must not contain null value.  

 Usually Primary Key is used to index the data inside the table. 

 

Example1: PRIMARY KEY constraint at column level 

SQL>CREATE table student(rollnum number(3) PRIMARY KEY, sname char(20) NOT 

NULL, Age number(3)); 

In the above query rollnum field should contain some value and it should not be repeated. 

 

Example2:PRIMARY KEY constraint at Table Level 

SQL> CREATE table student(rollnum number(3), sname char(20) NOT NULL, Age 

number(3), PRIMARY KEY(ROLLNUM)); 

 

Example3:PRIMARY KEY constraint after table is created (Column Level) 

ALTER table student add PRIMARY KEY(rollnum); 

The above command will creates a PRIMARY KEY on the rollnum. 

 

http://www.studytonight.com/dbms/sql-constraints
http://www.studytonight.com/dbms/sql-constraints
http://www.studytonight.com/dbms/sql-constraints
http://www.studytonight.com/dbms/sql-constraints
http://www.studytonight.com/dbms/sql-constraints
http://www.studytonight.com/dbms/sql-constraints
http://www.studytonight.com/dbms/sql-constraints
http://www.studytonight.com/dbms/sql-constraints
http://www.studytonight.com/dbms/sql-constraints
https://www.tutorialspoint.com/sql/sql-primary-key.htm
http://www.studytonight.com/dbms/sql-constraints
http://www.studytonight.com/dbms/sql-constraints
http://www.studytonight.com/dbms/sql-constraints
http://www.studytonight.com/dbms/sql-constraints
http://www.studytonight.com/dbms/sql-constraints
http://www.studytonight.com/dbms/sql-constraints
http://www.studytonight.com/dbms/sql-constraints
http://www.studytonight.com/dbms/sql-constraints
http://www.studytonight.com/dbms/sql-constraints
http://www.studytonight.com/dbms/sql-constraints
http://www.studytonight.com/dbms/sql-constraints


SQL Introduction    Unit - IV 
 

St.Joseph’s Degree&PG College  11 
 

 

FOREIGN Key – 

 A FOREIGN KEY is a key used to link two tables together. 

 A FOREIGN KEY is a field (or collection of fields) in one table that refers to the PRIMARY KEY 

in another table. 

 In simpler words, the foreign key is defined in a second table, but it refers to the primary 

key or a unique key in the first table. 

 The table containing the foreign key is called the child table or detail table, and the table 

containing the primary key/candidate key is called parent table or master table. 

 The FOREIGN KEY constraint is used to prevent actions that would destroy links 

between tables. 

 The FOREIGN KEY constraint also prevents invalid data from being inserted into the 

foreign key column, because it has to be one of the values contained in the table it 

points to. 

 For example, a table called Customer_Detail has a primary key called c_id. Another table 

called Order_ Details has a foreign key which references c_id in order to uniquely identify 

the relationship between both tables. 

 

Customer_Detail Table : 

c_id Customer_Name address 

101 Adam Noida 

102 Alex Delhi 

103 Stuart Rohtak 

 

Order_Detail Table : 

Order_id Order_Name c_id 

10 Order1 101 

https://www.tutorialspoint.com/sql/sql-foreign-key.htm
http://www.studytonight.com/dbms/sql-constraints
http://www.studytonight.com/dbms/sql-constraints


SQL Introduction    Unit - IV 
 

St.Joseph’s Degree&PG College  12 
 

11 Order2 103 

12 Order3 102 

In Customer_Detail table, c_id is the primary key which is set as foreign key 

in Order_Detail table. The value that is entered in c_id which is set as foreign key 

in Order_Detail table must be present in Customer_Detailtable where it is set as primary 

key. This prevents invalid data to be inserted into c_id column of Order_Detailtable. 

 

Example1: FOREIGN KEY constraint at Table Level: 

SQL>CREATE table Order_Detail(order_id number(5) PRIMARY KEY, order_name 

varchar2(20) NOT NULL, c_id number(4) REFERENCES Customer_Detail(c_id)); 

 

In this query, c_id in table Order_Detail is made as foriegn key, which is a reference of c_id 

column of Customer_Detail. 

 

Example2: FOREIGN KEY constraint at Column Level after creating the table 

SQL> ALTER table Order_Detail add FOREIGN KEY(c_id) REFERENCES 

Customer_Detail(c_id); 

 

CHECK Constraint – 

 The CHECK Constraint enables a condition to check the value being entered into a 

record. If the condition evaluates to false, the record violates the constraint and isn't 

entered the table. 

 CHECK constraint is used to restrict the value of a column between a range.  

 It is like condition checking before saving data into a column. 

Example1: CHECK constraint at creating a table  

SQL> CREATE table student(rollnum number(4) NOT NULL CHECK(rollnum > 0), 
sname char(20) NOT NULL, Age Number(3)); 

The above query will restrict the s_id value to be greater than zero. 

Example2: CHECK constraint at Column Level after creating the table 

SQL> ALTER table student add CHECK(rollnum > 0); 

http://www.studytonight.com/dbms/sql-constraints
http://www.studytonight.com/dbms/sql-constraints
http://www.studytonight.com/dbms/sql-constraints
http://www.studytonight.com/dbms/sql-constraints
http://www.studytonight.com/dbms/sql-constraints
http://www.studytonight.com/dbms/sql-constraints
http://www.studytonight.com/dbms/sql-constraints
http://www.studytonight.com/dbms/sql-constraints
http://www.studytonight.com/dbms/sql-constraints
http://www.studytonight.com/dbms/sql-constraints
https://www.tutorialspoint.com/sql/sql-check.htm
http://www.studytonight.com/dbms/sql-constraints


SQL Introduction    Unit - IV 
 

St.Joseph’s Degree&PG College  13 
 

 

Dropping Constraints 

 Any constraint that you have defined can be dropped using the ALTER TABLE command with 

the DROP CONSTRAINT option. 

 For example, to drop the primary key constraint in the EMPLOYEES table, you can use the 

following command. 

ALTER TABLE EMPLOYEES DROP CONSTRAINT EMPLOYEES_PK; 

Some implementations may provide shortcuts for dropping certain constraints. For example, 

to drop the primary key constraint for a table in Oracle, you can use the following command. 

ALTER TABLE EMPLOYEES DROP PRIMARY KEY; 

 

 

DCL commands: 

Data Control Language(DCL) is used to control privilege in Database. To perform any operation 

in the database, such as for creating tables, sequences or views we need privileges. DCL 

commands are used to enforce database security in a multiple database environment.  Database 

Administrator's or owners of the database object can provide/remove privileges on a database 

object. 

DCL defines two commands, 

 Grant: Gives user access privileges to database. 

 Revoke: Take back permissions from user. 

 

GRANT command: 

SQL Grant command is used to provide access on the database objects to the users.  

The syntax for the GRANT command is:  

GRANT privilege_name ON object_name TO user_name; 

Here, privilege_name: is the access right or privilege granted to the user.  

object_name: is the name of the database object like table, view etc. 

user_name: is the name of the user to whom an access right is being granted.  

 

 



SQL Introduction    Unit - IV 
 

St.Joseph’s Degree&PG College  14 
 

Revoke Command 

The revoke command removes user access rights or privileges to the database objects. 

The syntax for the REVOKE command is:  

REVOKE privilege_name ON object_name FROM User_name; 

Example: (a) SQL>GRANT SELECT ON employee TO user1  

This command grants a SELECT permission on employee table to user1.  

(b) SQL>REVOKE SELECT ON employee FROM user1  

This command will revoke a SELECT privilege on employee table from user1. 

 

1. To Allow a User to create Table 

grant create table to username; 

2. To Grant permission to Drop any Table 

Grant drop ant table to username 

3. To take back Permissions 

Revoke create table from username 

SQL Operators: 

An operator is a reserved word or a character used primarily in an SQL statement's 

WHERE clause to perform operation(s), such as comparisons and arithmetic operations. 

These Operators are used to specify conditions in an SQL statement and to serve as 

conjunctions for multiple conditions in a statement. 

 Arithmetic operators 

 Relational operators 

 Logical operators 

 Special operators 

 

 

 



SQL Introduction    Unit - IV 
 

St.Joseph’s Degree&PG College  15 
 

 

1. SQL Arithmetic Operators: 

Assume 'variable a' holds 10 and 'variable b' holds 20, then − 

Operator Description Example 

+ (Addition) 
Adds values on either side of the operator. a + b will 

give 30 

- (Subtraction) 
Subtracts right hand operand from left hand 

operand. 

a - b will 

give -10 

* 

(Multiplication) 

Multiplies values on either side of the operator. a * b will 

give 200 

/ (Division) 
Divides left hand operand by right hand operand. b / a will 

give 2 

% (Modulus) 
Divides left hand operand by right hand operand 

and returns remainder. 

b % a will 

give 0 

 

2. Relational Operators: 

Operator Description Example 

= 
Checks if the values of two operands are equal or not, if 

yes then condition becomes true. 

(a = b) is 

not true. 

!=<> 
Checks if the values of two operands are equal or not, if 

values are not equal then condition becomes true. 

(a != b) 

is true. 

> 

Checks if the value of left operand is greater than the 

value of right operand, if yes then condition becomes 

true. 

(a > b) is 

not true. 



SQL Introduction    Unit - IV 
 

St.Joseph’s Degree&PG College  16 
 

< 
Checks if the value of left operand is less than the value 

of right operand, if yes then condition becomes true. 

(a < b) is 

true. 

>= 

Checks if the value of left operand is greater than or 

equal to the value of right operand, if yes then condition 

becomes true. 

(a >= b) 

is not 

true. 

<= 

Checks if the value of left operand is less than or equal 

to the value of right operand, if yes then condition 

becomes true. 

(a <= b) 

is true. 

 

3. SQL Logical Operators: 

Sr.No. Operator & Description 

1 

AND 

The AND operator allows the existence of multiple conditions in an 

SQL statement's WHERE clause. 

2 

OR 

The OR operator is used to combine multiple conditions in an SQL 

statement's WHERE clause. 

3 

NOT 

The NOT operator reverses the meaning of the logical operator with 

which it is used. Eg: NOT EXISTS, NOT BETWEEN, NOT IN, etc. This 

is a negate operator. 

 

4 

ANY 

The ANY operator is used to compare a value to any applicable value 

in the list as per the condition. 

 

5 

BETWEEN 



SQL Introduction    Unit - IV 
 

St.Joseph’s Degree&PG College  17 
 

The BETWEEN operator is used to search for values that are within a 

set of values, given the minimum value and the maximum value. 

6 EXISTS 

The EXISTS operator is used to search for the presence of a row in a 

specified table that meets a certain criterion. 

 

7 

IN 

The IN operator is used to compare a value to a list of literal values 

that have been specified. 

 

8 

LIKE 

The LIKE operator is used to compare a value to similar values using 

wildcard operators. 

 

Examples on operators: 

1. UPDATE emp   SET sal = sal * 1.5; 

2. SELECT *  FROM emp  WHERE sal != 1500; 

3. SELECT * FROM emp  WHERE job IN('CLERK','ANALYST'); 

4. SELECT * FROM emp  WHERE sal NOT IN ('CLERK', 'ANALYST'); 

5. SELECT first_name, last_name, age FROM student WHERE age >= 10 AND age <= 15; 

6. SELECT *  FROM emp  WHERE job = 'CLERK'  AND deptno = 10; 

7. SELECT *  FROM emp  WHERE job = 'CLERK'  OR deptno = 10; 

8. SELECT first_name, last_name, games FROM student WHERE NOT games = 'Football'; 



 Page 1 
 

Unit-V 

Processing Single and Multiple Tables 

SQL SELECT DISTINCT Statement 

The SELECT DISTINCT statement is used to return only distinct (different) values. 

The SQL SELECT DISTINCT Statement 

In a table, a column may contain many duplicate values; and sometimes you only want to list the 

different (distinct) values. 

The DISTINCT keyword can be used to return only distinct (different) values. 

SQL SELECT DISTINCT Syntax 

SELECT DISTINCT column_name1,column_name2 

FROM  table_name; 

Consider the following table Sales: 

SALES_NO SALES_NAME BRANCH SALES_AMOUNT DOB 

1020 AutoMobiles Hyderabad 68452 28-JUL-85 

1021 Electronics Secunderabad 47850 22-AUG-95 

1022 Electronics Secunderabad 44500 03-JUN-86 

1023 AutoMobiles Hyderabad 74200 28-SEP-96 

1024 AutoMobiles Hyderabad 54500 28-OCT-84 

 

SELECT DISTINCT Example 

The following SQL statement selects only the distinct values from the "branch" column from the 

"Sales" table: 

Example 

SELECT  DISTINCT  Branch  FROM  Sales;  

 

Sorting Results: ORDER BY, GROUP BY AND HAVING CLAUSES 

 

ORDER BY The basic syntax of ORDER BY clause which would be used to sort result 

in ascending or descending order 

GROUP BY The SQL GROUP BY clause is used in collaboration with the SELECT 

statement to arrange identical data into groups. The GROUP BY clause 

follows the WHERE clause in a SELECT statement and precedes the 

ORDER BY clause. 



 Page 2 
 

HAVING The HAVING clause enables you to specify conditions that filter which 

group results appear in the final results. 

Consider the following table Sales as example: 

SALES_NO SALES_NAME BRANCH SALES_AMOUNT DOB 

1020                                        AutoMobiles Hyderabad 68452 28-JUL-85 

1021 Electronics Secunderabad 47850 22-AUG-95 

1022 Electronics Secunderabad 44500 03-JUN-86 

1023 AutoMobiles Hyderabad 74200 28-SEP-96 

1024 AutoMobiles Hyderabad 54500 28-OCT-84 

 
Example for GROUP BY: 

Calculate Total SalesAmount in each Branch: 

 

Query:select branch,sum(Sales_Amount) from sales group by Branch; 

 

OutPut: 

BRANCH                    SUM(SALES_AMOUNT) 

--------------                 --------------------------------- 

Hyderabad                            197152 

Secunderabad92350 

 

Example for ORDER BY: 

1. Display the name and Dob of salesmen in Alpabetical order of the month: 

 

Query:select Sales_Name,to_char(DOB,'MONTH') from sales Order by to_Char(DOB,'Day'); 

 

Example for HAVING: 

SQL > SELECT Sales_no,Sales_name from sales GROUP BY branch HAVING 

sales_amount>40000; 

SQL AGGREGATE FUNCTIONS 

SQL has many built-in functions for performing calculations on data. SQL aggregate functions 

return a single value, calculated from values in a column. 

Useful aggregate functions: 

 AVG() - Returns the average value 

 COUNT() - Returns the number of rows 

 FIRST() - Returns the first value 

 LAST() - Returns the last value 

 MAX() - Returns the largest value 

 MIN() - Returns the smallest value 



 Page 3 
 

 SUM() - Returns the sum 

1) The AVG() Function: The AVG() function returns the average value of a numeric column. 

SQL AVG() Syntax 

SELECT AVG(column_name)  FROM  table_name; 

Example 

SELECT AVG(Price) FROM Products;  

2) The COUNT() function returns the number of rows that matches a specified criteria. 

SQL COUNT(column_name) Syntax 

The COUNT(column_name) function returns the number of values (NULL values will not be 

counted) of the specified column: 

SELECT COUNT(column_name) FROM table_name; 

3) The FIRST() Function 

The FIRST() function returns the first value of the selected column. 

SQL FIRST() Syntax 

SELECT FIRST(column_name) FROM table_name; 

SQL FIRST() Example 

The following SQL statement selects the first value of the "CustomerName" column from the 

"Customers" table: 

Example 

SELECT FIRST(CustomerName) AS FirstCustomer FROM Customers;  

4) The MAX() Function 

The MAX() function returns the largest value of the selected column. 

SQL MAX() Syntax 

SELECT MAX(column_name) FROM table_name; 

SQL MAX() Example 

The following SQL statement gets the largest value of the "Price" column from the "Products" 

table: 



 Page 4 
 

Example 

SELECT MAX(Price) AS HighestPrice FROM Products;  

 

5) The MIN() Function 

The MIN() function returns the smallest value of the selected column. 

SQL MIN() Syntax 

SELECT MIN(column_name) FROM table_name; 

SQL MIN() Example 

The following SQL statement gets the smallest value of the "Price" column from the "Products" 

table: 

Example 

SELECT MIN(Price) AS SmallestOrderPrice FROM Products;  

6) The SUM() Function 

The SUM() function returns the total sum of a numeric column. 

SQL SUM() Syntax 

SELECT SUM(column_name) FROM table_name; 

SQL SUM() Example 

The following SQL statement finds the sum of all the "Quantity" fields for the "OrderDetails" 

table: 

Example 

SELECT SUM(Quantity) AS TotalItems Ordered FROM OrderDetails;  

VIEWS 

A view is nothing more than a SQL statement that is stored in the database with an associated 

name. A view is actually a composition of a table in the form of a predefined SQL query. 

A view can contain all rows of a table or select rows from a table. A view can be created from 

one or many tables which depends on the written SQL query to create a view. 

Creating Views: 



 Page 5 
 

Database views are created using the CREATE VIEW statement. Views can be created from a 

single table, multiple tables, or another view. 

To create a view, a user must have the appropriate system privilege according to the specific 

implementation. 

The basic CREATE VIEW syntax is as follows: 

CREATE VIEW view_name AS 

SELECT column1, column2..... 

FROM table_name 

WHERE [condition]; 

You can include multiple tables in your SELECT statement in very similar way as you use them 

in normal SQL SELECT query. 

Example: 
Consider the CUSTOMERS table having the following records: 

 

| ID | NAME     | AGE | ADDRESS   | SALARY   | 

+----+----------+-----+-----------+----------+ 

|1|Ramesh|32|Ahmedabad|2000.00| 

|2|Khilan|25|Delhi|1500.00| 

|3|kaushik|23|Kota|2000.00| 

|4|Chaitali|25|Mumbai|6500.00| 

|5|Hardik|27|Bhopal|8500.00| 

|6|Komal|22| MP        |4500.00| 

|7|Muffy|24|Indore|10000.00| 

+----+----------+-----+-----------+----------+ 

Now, following is the example to create a view from CUSTOMERS table. This view would be 

used to have customer name and age from CUSTOMERS table: 

SQL > CREATE VIEW CUSTOMERS_VIEW AS 

SELECT name, age 

FROM  CUSTOMERS; 



 Page 6 
 

Now, you can query CUSTOMERS_VIEW in similar way as you query an actual table. Following 

is the example: 

SQL > SELECT * FROM CUSTOMERS_VIEW; 

This would produce the following result: 

+----------+-----+ 

|name| age | 

+----------+-----+ 

|Ramesh|32| 

|Khilan|25| 

|kaushik|23| 

|Chaitali|25| 

|Hardik|27| 

|Komal|22| 

|Muffy|24| 

+----------+-----+ 

QL > UPDATE CUSTOMERS_VIEW 

      SET AGE =35 

      WHERE name='Ramesh'; 

This would ultimately update the base table CUSTOMERS and same would reflect in the view 

itself.  

Dropping Views: 

Obviously, where you have a view, you need a way to drop the view if it is no longer needed. The 

syntax is very simple as given below: 

DROP VIEW view_name; 

Following is an example to drop CUSTOMERS_VIEW from CUSTOMERS table: 

DROP VIEW CUSTOMERS_VIEW; 

Creating views for Multiple tables: 



 Page 7 
 

create view employee_summary as select e.emp_id, e.last_name, p.position, p.date_hire, 

p.emp_id from employee_tbl e, employee_pay_tbl p  where e.emp_id = p.emp_id; 

 

 

Set Operation in SQL 

SQL supports few Set operations to be performed on table data. These are used to get meaningful 

results from data, under different special conditions. 

Union 

UNION is used to combine the results of two or more Select statements. However it will 

eliminate duplicate rows from its result set. In case of union, number of columns and datatype 

must be same in both the tables. 

 

 

Example of UNION 

The First table, 

ID Name 

1 abhi 

2 adam 

The Second table, 

ID Name 

2 adam 

3 Chester 

Union SQL query will be, 

select * from First 



 Page 8 
 

UNION 

select * from second ; 

The result table will look like, 

ID NAME 

1 abhi 

2 adam 

3 Chester 

 

Union All 

This operation is similar to Union. But it also shows the duplicate rows. 

 

Example of Union All 

Union All query will be like, 

select * from First 

UNION ALL 

select * from second; 

The result table will look like, 

ID NAME 

1 abhi 

2 adam 

2 adam 



 Page 9 
 

3 Chester 

 

 

 

Intersect 

Intersect operation is used to combine two SELECT statements, but it only returns the records 

which are common from both SELECT statements. In case of Intersect the number of columns 

and data type must be same. MySQL does not support INTERSECT operator. 

 

Example of Intersect 

Intersect query will be, 

select * from First 

INTERSECT 

select * from second; 

The result table will look like 

ID NAME 

2 adam 

 

Minus 

Minus operation combines result of two Select statements and return only those result which 

belongs to first set of result. MySQL does not support INTERSECT operator. 



 Page 10 
 

 

Example of Minus 

Minus query will be, 

select * from First 

MINUS 

select * from second; 

The result table will look like, 

ID NAME 

1 abhi 

Joins 

The SQL Joins clause is used to combine records from two or more tables in a database. A JOIN 

is a means for combining fields from two tables by using values common to each. 

Consider the following two tables, (a) CUSTOMERS table is as follows 

| ID | NAME     | AGE | ADDRESS   | SALARY   | 

+----+----------+-----+-----------+----------+ 

|  1 | Ramesh   |  32 | Ahmedabad |  2000.00 | 

|  2 | Khilan   |  25 | Delhi     |  1500.00 | 
|  3 | kaushik  |  23 | Kota      |  2000.00 | 

|  4 | Chaitali |  25 | Mumbai    |  6500.00 | 

|  5 | Hardik   |  27 | Bhopal    |  8500.00 | 

|  6 | Komal    |  22 | MP        |  4500.00 | 

|  7 | Muffy    |  24 | Indore    | 10000.00 | 

(b) Another table is ORDERS as follows: 
+-----+---------------------+-------------+--------+ 
|OID  | DATE                | CUSTOMER_ID | AMOUNT | 

+-----+---------------------+-------------+--------+ 

| 102 | 2009-10-08 00:00:00 |           3 |   3000 | 

| 100 | 2009-10-08 00:00:00 |           3 |   1500 | 

| 101 | 2009-11-20 00:00:00 |           2 |   1560 | 

| 103 | 2008-05-20 00:00:00 |           4 |   2060 | 

+-----+---------------------+-------------+--------+ 

Now, let us join these two tables in our SELECT statement as follows: 



 Page 11 
 

SQL>SELECT ID, NAME, AGE, AMOUNT 

          FROM CUSTOMERS, ORDERS 

          WHERE  CUSTOMERS.ID = ORDERS.CUSTOMER_ID; 

This would produce the following result: 

| ID | NAME     | AGE | AMOUNT | 
+----+----------+-----+--------+ 

|  3 | kaushik  |  23 |   3000 | 

|  3 | kaushik  |  23 |   1500 | 

|  2 | Khilan   |  25 |   1560 | 

|  4 | Chaitali |  25 |   2060 | 

+----+----------+-----+--------+ 

Here, it is noticeable that the join is performed in the WHERE clause. Several operators can be 

used to join tables, such as =, <, >, <>, <=, >=, !=, BETWEEN, LIKE, and NOT; they can all be 

used to join tables. However, the most common operator is the equal symbol. 

SQL Join Types: 

There are different types of joins available in SQL: 

 INNER JOIN: returns rows when there is a match in both tables. 

 LEFT JOIN: returns all rows from the left table, even if there are no matches in the right 

table. 

 RIGHT JOIN: returns all rows from the right table, even if there are no matches in the 

left table. 

 FULL JOIN: returns rows when there is a match in one of the tables. 

 SELF JOIN: is used to join a table to itself as if the table were two tables, temporarily 

renaming at least one table in the SQL statement. 

The most frequently used and important of the joins is the INNER JOIN. They are also 

referred to as an EQUIJOIN.The INNER JOIN creates a new result table by combining 

column values of two tables (table1 and table2) based upon the join-predicate. The query 

compares each row of table1 with each row of table2 to find all pairs of rows which 

satisfy the join-predicate. When the join-predicate is satisfied, column values for each 

matched pair of rows of A and B are combined into a result row. 

Syntax: 

The basic syntax of INNER JOIN is as follows: 

SELECT table1.column1, table2.column2... 

FROM table1 

INNER JOIN table2 

ON table1.common_field = table2.common_field; 

http://www.tutorialspoint.com/sql/sql-inner-joins.htm
http://www.tutorialspoint.com/sql/sql-left-joins.htm
http://www.tutorialspoint.com/sql/sql-right-joins.htm
http://www.tutorialspoint.com/sql/sql-full-joins.htm
http://www.tutorialspoint.com/sql/sql-self-joins.htm


 Page 12 
 

Example: 

Consider the following two tables, (a) CUSTOMERS table is as follows 

| ID | NAME     | AGE | ADDRESS   | SALARY   | 
+----+----------+-----+-----------+----------+ 

|1|Ramesh|32|Ahmedabad|2000.00| 

|2|Khilan|25|Delhi|1500.00| 

|3|kaushik|23|Kota|2000.00| 

|4|Chaitali|25|Mumbai|6500.00| 

|5|Hardik|27|Bhopal|8500.00| 

|6|Komal|22| MP        |4500.00| 

|7|Muffy|24|Indore|10000.00| 

+----+----------+-----+-----------+----------+ 

(b) Another table is ORDERS as follows: 

| OID | DATE                | CUSTOMER_ID | AMOUNT | 

+-----+---------------------+-------------+--------+ 

|102|2009-10-0800:00:00|3|3000| 

|100|2009-10-0800:00:00|3|1500| 

|101|2009-11-2000:00:00|2|1560| 
|103|2008-05-2000:00:00|4|2060| 

+-----+---------------------+-------------+--------+ 

Now, let us join these two tables using INNER JOIN as follows: 

SQL>SELECT  ID, NAME, AMOUNT, DATE 

FROM CUSTOMERS 

INNER JOIN ORDERS 

ON CUSTOMERS.ID = ORDERS.CUSTOMER_ID; 

This would produce the following result: 

| ID | NAME     | AMOUNT | DATE                | 
+----+----------+--------+---------------------+ 

|3|kaushik|3000|2009-10-0800:00:00| 

|3|kaushik|1500|2009-10-0800:00:00| 

|2|Khilan|1560|2009-11-2000:00:00| 

|4|Chaitali|2060|2008-05-2000:00:00| 

 

SQL FULL OUTER JOIN Keyword 

The FULL OUTER JOIN keyword returns all rows from the left table (table1) and from the right 

table (table2). 



 Page 13 
 

The FULL OUTER JOIN keyword combines the result of both LEFT and RIGHT joins. 

SQL FULL OUTER JOIN Syntax 

SELECT column_name(s) 

FROM table1 

FULL OUTER JOIN table2 

ON table1.column_name=table2.column_name; 

 

Demo Database 

In this tutorial we will use the well-known Northwind sample database.Below is a selection from 

the "Customers" table: 

CustomerID CustomerName ContactName Address City PostalCode Country 

1 
AlfredsFutterkiste Maria Anders Obere Str. 57 Berlin 12209 Germany 

2 

Ana Trujillo 

Emparedados y 

helados 

Ana Trujillo 

Avda. de la 

Constitución 

2222 

México 

D.F. 
05021 Mexico 

3 
Antonio Moreno 

Taquería 

Antonio 

Moreno 

Mataderos 

2312 

México 

D.F. 
05023 Mexico 

And a selection from the "Orders" table: 

OrderID CustomerID EmployeeID OrderDate ShipperID 

10308 2 7 1996-09-18 3 

10309 3 3 1996-09-19 1 

10310 1 8 1996-09-20 2 

 

SQL FULL OUTER JOIN Example 

The following SQL statement selects all customers, and all orders: 

SELECT Customers.CustomerName, Orders.OrderID 

FROM Customers 

FULL OUTER JOIN Orders 



 Page 14 
 

ON Customers.CustomerID=Orders.CustomerID; 

 

A selection from the result set may look like this: 

CustomerName OrderID 

AlfredsFutterkiste   

Ana Trujillo Emparedados y helados 10308 

Antonio Moreno Taquería 10365 

  10382 

  10351 

Note: The FULL OUTER JOIN keyword returns all the rows from the left table (Customers), 

and all the rows from the right table (Orders). If there are rows in "Customers" that do not have 

matches in "Orders", or if there are rows in "Orders" that do not have matches in "Customers", 

those rows will be listed as well. 

SQL Natural Join: 

Same as equi-join except one of the duplicate column is eliminated in the result table 

The SQL NATURAL JOIN is a type of EQUI JOIN and is structured in such a way that, 

columns with same name of associate tables will appear once only. 

Natural Join : Guidelines 

- The associated tables have one or more pairs of identically named columns. 

- The columns must be the same data type. 

- Don’t use ON clause in a natural join. 

Here is an example of SQL natural join between two tables 

Sample table1: foods 

ITEM_ID | ITEM_NAME    | ITEM_UNIT | COMPANY_ID | 

+---------+--------------+-----------+------------+ 

| 1       | Chex Mix     | Pcs       | 16         | 

| 6       | Cheez-It     | Pcs       | 15         | 

| 2       | BN Biscuit   | Pcs       | 15         | 

| 3       | Mighty Munch | Pcs       | 17         | 

| 4       | Pot Rice     | Pcs       | 15         | 

| 5       | Jaffa Cakes  | Pcs       | 18         | 

| 7       | Salt n Shake | Pcs       |             

 

Sample table2: company 



 Page 15 
 

COMPANY_ID | COMPANY_NAME  | COMPANY_CITY | 

+------------+---------------+--------------+ 

| 18         | Order All     | Boston       | 

| 15         | Jack Hill Ltd | London       | 

| 16         | Akas Foods    | Delhi        | 
| 17         | Foodies.      | London       | 

| 19         | sip-n-Bite.   | New York    

To get all the unique columns from foods and company tables, the following sql statement can be 

used : 

SELECT *  FROM foods   NATURAL JOIN company;  

 

 

SUBQUERIES 

 A subquery is a query (SELECT statement) inside a query. It is used to process data based 

on other processed data.           

 A subquery is normally expressed inside parentheses. 

 The first query in the SQL statement is known as the outer query and the query inside the 

SQL statement is known as the inner query. 

 The inner query is executed first. The output of an inner query is used as the input for the 

outer query. 

For example,  

select pcode, price from product where price >= (select avg(price) from product); 

 

WHERE Subqueries: The subquery uses an inner SELECT subquery on the right side of a 

WHERE comparison expression. 

Ex:  Select pcode, price from product where price >= (select avg(price) from product); 

 

IN Subqueries: To compare a single attribute to a list of values, you use the IN operator. 

Ex:  select distinct cuscode, lname, fname from customer where pcode in 

 (select pcode from product where  descrip like  '%hammer%' ); 

 

HAVING Subqueries:  The HAVING clause is used to restrict the output of a GROUP BY 

query by applying a conditional criteria to the grouped rows. 

Ex:  select pcode, sum(lineunits) from line group by pcode having 

  sum(lineunits) > (select avg(lineunits) from line); 

 

 



 Page 16 
 

Multirow Subquery Operators: ANY and ALL 

The use of the ALL operator allows you to compare a single value with a list of values returned 

by the first subquery (sqA) using a comparison operator other than equals. 

 

Ex:  select pcode, qoh * price from product where qoh *price > all (select qoh * price from 

 product where vcode in (select vcode from vendor where state = ‘fl’)); 

 

The ANY operator allows you to compare a single value to a list of values, selecting only the rows 

for which the value is greater than any value of the list or less than any value of the list. You could 

use the equal to ANY operator, which would be the equivalent of the IN operator. 

 

Correlated Subqueries: A correlated subquery is a subquery that executes once for each row in 

the outer query,similar to the typical nested loop in a programming language. 

1. It initiates the outer query. 

2. For each row of the outer query result set, it executes the inner query by passing the outer row 

to the inner query. 

 

Ex:  select Invnumber, pcode, lineunits from line ls where ls.lineunits >  

 (select avg(lineunits) from line la where la.pcode = ls.pcode); 

 

1. Compute the average-units-sold value for a product. 

2. Compare the average computed in Step 1 to the units sold in each sale row and then select 

only the rows in which the number of units sold is greater. 


	Entity-Relationship Model:
	Entity
	Attributes
	Relationship
	Types of Entities
	Weak Entity: Weak entity is an entity that depends on another entity. Weak entity doesn't have key attribute (primary key) of their own. In other words, the entity set which does not have sufficient attributes to form a primary key is called as Weak e...
	Strong Entity: An entity which have an independent existence is called strong entity. A strong entity set have their primary keys.
	Types of Attributes:
	Type of Relationships:
	A relationship describes an association among entities. For example, a relationship exists between customers and agents that can be described as follows: an agent can serve many customers, and each customer may be served by one agent.
	Mapping Cardinalities: Mapping cardinalities defines the association between entities. There are different types of relationships.
	Degree of Relationship: The number of participating entities in a relationship defines the degree of the relationship.
	Entity-Set and Keys
	E-R Diagram

	But joining the huge EMPLOYEE and DEPT table will affect the performance of the query. But we cannot merge DEPT with EMPLOYEE. At the same time, we need to have a separate DEPT table with many other details, apart from its ID and Name. In this case, w...
	Benefits of Normalization
	Codd's Rules:
	Rule 0:
	Rule 1: Information rule
	Rule 2: Guaranteed Access
	Rule 3: Systematic treatment of NULL
	Rule 4: Active Online Catalog
	Rule 5: Powerful language
	Rule 6: View-Updation rule
	Rule 7: Relational Level Operation
	Rule 8: Physical Data Independence
	Rule 9: Logical Data Independence
	Rule 10: Integrity Independence
	Rule 11: Distribution Independence
	Rule 12: Non-subversion rule

	UNIT IV - Introduction to SQL
	Table:
	Field or Column:
	Record or a Row:
	Syntax: DELETE FROM table_name WHERE [condition];
	Syntax of SQL SELECT Statement - global selection)
	Example1: UNIQUE constraint when creating a Table (column level)
	SQL>CREATE table student (Rollnum number(3) UNIQUE, Sname char(20), Age number(3));
	Example2:UNIQUE constraint when creating a Table (Table Level)
	SQL>CREATE table student (Rollnum number(3), Sname char(20), Age number(3), UNIQUE(Rollnum));
	Example3: UNIQUE constraint after Table is created (Column Level)
	SQL> ALTER table student add UNIQUE(rollnum);
	Example1: PRIMARY KEY constraint at column level
	SQL>CREATE table student(rollnum number(3) PRIMARY KEY, sname char(20) NOT NULL, Age number(3));
	Example2:PRIMARY KEY constraint at Table Level
	SQL> CREATE table student(rollnum number(3), sname char(20) NOT NULL, Age number(3), PRIMARY KEY(ROLLNUM));
	Example3:PRIMARY KEY constraint after table is created (Column Level)
	ALTER table student add PRIMARY KEY(rollnum);
	Example1: FOREIGN KEY constraint at Table Level:
	SQL>CREATE table Order_Detail(order_id number(5) PRIMARY KEY, order_name varchar2(20) NOT NULL, c_id number(4) REFERENCES Customer_Detail(c_id));
	In this query, c_id in table Order_Detail is made as foriegn key, which is a reference of c_id column of Customer_Detail.
	Example2: FOREIGN KEY constraint at Column Level after creating the table
	SQL> ALTER table Order_Detail add FOREIGN KEY(c_id) REFERENCES Customer_Detail(c_id);


	 The CHECK Constraint enables a condition to check the value being entered into a record. If the condition evaluates to false, the record violates the constraint and isn't entered the table.
	Example1: CHECK constraint at creating a table
	SQL> CREATE table student(rollnum number(4) NOT NULL CHECK(rollnum > 0), sname char(20) NOT NULL, Age Number(3));
	Example2: CHECK constraint at Column Level after creating the table
	SQL> ALTER table student add CHECK(rollnum > 0);

	Dropping Constraints
	DCL commands:
	GRANT command:
	SQL Grant command is used to provide access on the database objects to the users.
	The syntax for the GRANT command is:
	GRANT privilege_name ON object_name TO user_name;
	Here, privilege_name: is the access right or privilege granted to the user.
	object_name: is the name of the database object like table, view etc.
	user_name: is the name of the user to whom an access right is being granted.
	Revoke Command
	The revoke command removes user access rights or privileges to the database objects.
	The syntax for the REVOKE command is:
	REVOKE privilege_name ON object_name FROM User_name;
	Example: (a) SQL>GRANT SELECT ON employee TO user1
	This command grants a SELECT permission on employee table to user1.
	(b) SQL>REVOKE SELECT ON employee FROM user1
	This command will revoke a SELECT privilege on employee table from user1.
	1. To Allow a User to create Table
	2. To Grant permission to Drop any Table
	3. To take back Permissions


	1. SQL Arithmetic Operators:
	3. SQL Logical Operators:
	Examples on operators:

	8. SELECT first_name, last_name, games FROM student WHERE NOT games = 'Football';
	SQL SELECT DISTINCT Statement
	The SQL SELECT DISTINCT Statement
	SQL SELECT DISTINCT Syntax
	SELECT DISTINCT Example
	Example
	SQL AGGREGATE FUNCTIONS
	SQL has many built-in functions for performing calculations on data. SQL aggregate functions return a single value, calculated from values in a column.
	1) The AVG() Function: The AVG() function returns the average value of a numeric column.
	SQL AVG() Syntax

	Example (1)
	SQL COUNT(column_name) Syntax

	3) The FIRST() Function
	SQL FIRST() Syntax

	SQL FIRST() Example
	Example

	4) The MAX() Function
	SQL MAX() Syntax

	SQL MAX() Example
	Example

	5) The MIN() Function
	SQL MIN() Syntax

	SQL MIN() Example
	Example

	6) The SUM() Function
	SQL SUM() Syntax

	SQL SUM() Example
	Example

	Creating Views:
	Example:
	Union
	Example of UNION
	Union All
	Example of Union All
	Intersect
	Example of Intersect
	Minus
	Example of Minus

	Syntax:
	The basic syntax of INNER JOIN is as follows:
	Example: (1)
	SQL>SELECT  ID, NAME, AMOUNT, DATE
	FROM CUSTOMERS
	INNER JOIN ORDERS
	ON CUSTOMERS.ID = ORDERS.CUSTOMER_ID;
	SQL FULL OUTER JOIN Keyword
	SQL FULL OUTER JOIN Syntax

	Demo Database
	SQL FULL OUTER JOIN Example
	Natural Join : Guidelines



